Funct. Mater. 2017; 24 (3): 360-364.

doi:https://doi.org/10.15407/fm24.03.360

Investigations on temperature dependences of parameters of 127I NQR spectrum of (BiI3)(1-x)(PbI2)x mixed layered semiconductor and alkaline halogens crystals

I.G.Vertegel1, E.D.Chesnokov1, O.I.Ovcharenko1, I.I.Vertegel2, O.S.Ivanov2, Yu.P.Gnatenko1, O.A.Ponkratenko3

1Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Prosp., 03680 Kyiv, Ukraine
2National Technical University "KPI", 37 Peremohy Prosp.,03056 Kyiv, Ukraine
3Institute for Nuclear Research, National Academy of Sciences of Ukraine, 47 Nauky Prosp., 03680 Kyiv, Ukraine

Abstract: 

Results of investigations of the temperature dependence of NQR frequencies in the temperature range of 4.2-150 K for 127I and 79Br of the (BiI3)(1-x)(PbI2)x mixed layered semiconductor and the crystals of alkaline halogens are presented. The abnormally large absolute values of temperature coefficients of the NQR frequency for (BiI3)(1-x)(PbI2)x have been detected. It can be explained by influence of the point charges and interlayer fluctuations. It is concluded that the quasi-two-dimensional nature of the vibration states at PbI2 contents of x ≤0.08 is persistent. The value of the orientation and translational vibrations frequency of the halogen ions assuming the correctness of the two-frequency model Bayer-Kushida has been calculated.

Keywords: 
nuclear quadrupole resonance, layered semiconductors, asymmetry parameter, nanoclusters, alkaline halogens crystals.
References: 

1. G.K.Semin, T.A.Babushkina, G.G,Yakobson, Nuclear Quadrupole Resonance in Chemistry, Wiley, New York (1975).

2. G.Brunton, Mat. Res. Bull., 8, 791 (1973). https://doi.org/10.1016/0025-5408(73)90185-2

3. Yu.P.Gnatenko, I.G.Vertegel, E.D.Chesnokov et al., J. Appl. Phys., 108, 103711 (2010). https://doi.org/10.1063/1.3512862

4. A.I.Barabash, I.G.Vertegel, E.D.Chesnokov et al., Functional Materials, 17, 24 (2010).

5. A.I.Barabash, I.G.Vertegel, E.D.Chesnokov et al., Functional Materials, 19, 37 (2012).

6. D.L.Lyfar, S.M.Ryabchenko, Zh. Nizkotemperat. Fiziki, 5, 370 (1979).

7. A.I.Barabash, I.G.Vertegel, E.D.Chesnokov et al., Zh. Fiz. Khimii B, 9, 681 (2015).

8. I.S.Gorban, V.V.Donets, S.V.Rudko et al., Ukr. Fiz. J., 26, 495 (1981).

9. D.F.Baisa, A.I.Barabash, G.A.Puchkovskaya et al., Phys. Letts., 43A, 453 (1973).

10. D.F.Baisa, A.I.Barabash, I.G.Vertegel, Izvestiya AN SSSR. Ser. Phys., 51, 1701 (1987).

11. I.G.Vertegel, E.D.Chesnokov, O.A.Ponkratenko et al., Abstr. 69th Int. Symposium on Mol. Spectr., Illinois, USA (2014), p.205.

12. D.F.Baisa, A.I.Barabash, I.G.Vertegel, Izvestiya AN SSSR. Ser. Phys., 42, 2110 (1978).

13. R.Brun, F.Rademakers, Nucl. Instrum, Meth. Phys. Res., A 389, 81 (1997).

14. D.L.Lyfar, V.E.Goncharuk, S.M.Ryabchenko, Phys. Status Solidi(b), 78, 183 (1976). https://doi.org/10.1002/pssb.2220760119

15. G.K.Semin, J. Phys.l Chem. A, 81. 38 (2007).

Current number: