Funct. Mater. 2017; 24 (3): 388-392.

doi:https://doi.org/10.15407/fm24.03.388

Using cyanine dye J-aggregates as luminescence probe for nanostructured media

A.V. Sorokin, I.Yu. Ropakova, I.A. Borovoy, I.I. Bespalova, S.L. Yefimova

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine

Abstract: 

Due to excitonic nature of electronic excitations in J-aggregates causing the unique spectral properties they successfully applied as luminescent probes in biology. In present report we demonstrate a possibility using J-aggregates as the probe for nanostructured materials basing on BIC J-aggregates. As the probing tool the exciton delocalization length has been used as well as the lifetime. It has been shown direct dependence of the exciton characteristics of the J-aggregates on the specific features of solid matrices such as nanoporous matrix and polymer films.

Keywords: 
J-aggregates, nanoporous matrix, polymer films.
References: 

1. A. Zayats, D. Richards (Eds), Nano-Optics and Near-Field Optical Microscopy. Artech House, Boston (2009).

2. G.P. Wiederrecht (Ed.), Handbook of nanoscale optics and electronics. Elsevier B.V., Amsterdam (2010).

3. J. Uddin (Ed), Macro to Nano Spectroscopy. InTech, Rijeka (2012). https://doi.org/10.5772/2503

4. T. Kobayashi, ed., J-aggregates. Vol. 1, World Scientific Publishing, Singapore (1996). https://doi.org/10.1142/3168

5. T. Kobayashi, ed., J-aggregates. Vol. 2, World Scientific Publishing, Singapore (2012). https://doi.org/10.1142/8226

6. F. Wurthner, T.E. Kaiser, Ch.R. Saha-Muller, Angew. Chem. Int. Ed. 50, 3376 (2011). https://doi.org/10.1002/anie.201002307

7. J. Knoester and V.M. Agranovich, Frenkel and Charge-Transfer Excitons in Organic Solids, in V.M. Agranovich, G.F. Bassani, eds., Electronic Excitations in Organic Based Nanostructures. Elsevier, Amsterdam, Oxford (2003), pp. 1-96. https://doi.org/10.1016/S1079-4050(03)31001-4

8. Yu.V. Malyukin, A.V. Sorokin, V.P. Semynozhenko, Low Temp. Phys., 42, 429 (2016). https://doi.org/10.1063/1.4955493

9. A.S. Davydov, Theory of Molecular Excitons, Plenum Press, New York (1971).

10. M.Yu. Losytskyy and V.M. Yashchuk in: A.P. Demchenko, ed., Advanced Fluorescence Reporters in Chemistry and Biology II. Molecular Constructions, Polymers and Nanoparticles, Springer-Verlag, Berlin, Heidelberg (2010), pp, 135-159.

11. L.D. Bakalis, J. Knoester, J. Luminescence, 87-89, 66 (2000). https://doi.org/10.1016/S0022-2313(99)00231-8

12. A.V. Sorokin, A.V. Voloshko, I.I. Fylymonova, et. al,, Functional Materials, 20, 42 (2014). https://doi.org/10.15407/fm21.01.042

13. A.V. Sorokin, A.A. Zabolotskii, N.V. Pereverzev, et al., J. Phys. Chem. C, 119, 2743 (2015). https://doi.org/10.1021/jp5102626

14. A.V. Sorokin, N.V. Pereverzev, I.I. Grankina, et al., J. Phys. Chem. C., 119, 27865 (2015). https://doi.org/10.1021/acs.jpcc.5b09940

15. I.I. Fylymonova, S.L. Yefimova, A.V. Sorokin, Functional Materials, 19, 348 (2012).

16. V.F. Kamalov, I.A. Struganova, K. Yoshihara, Chem. Phys. Lett., 213, 559, (1993). https://doi.org/10.1016/0009-2614(93)89160-J

17. V.F. Kamalov, I.A. Struganova, K. Yoshihara, J. Phys. Chem., 100, 8640 (1996). https://doi.org/10.1021/jp9522472

18. S. Ozcelik, I. Ozcelik, D.L. Akins, Appl. Phys. Lett., 73, 1949 (1998). https://doi.org/10.1063/1.122563

19. M.S. Bradley, J.R. Tischler and V. Bulovic, Adv. Mater., 17, 1881 (2005). https://doi.org/10.1002/adma.200500233

20. A.V. Voloshko, V.V. Danilina, P.V. Mateychenko, I.I. Bespalova. Functional Materials, 19, 44 (2012).

21. M.J. Gentile, S. Nunez-Sanchez and W.L. Barnes, Nano Lett. 14, 2339 (2014) https://doi.org/10.1021/nl404712t

22. Yu.V. Malyukin, A.V. Sorokin, S.L. Efimova and A.N. Lebedenko, J. Luminescence, 112, 429 (2005). https://doi.org/10.1016/j.jlumin.2004.09.082

Current number: