Funct. Mater. 2017; 24 (3): 393-399.

doi:https://doi.org/10.15407/fm24.03.393

GdVO4:Eu3+ nanoparticles - embedded CaCO3 microspheres: synthesis and characterization

I.I.Bespalova1, S.L.Yefimova1, T.N.Tkacheva1, K.A.Hubenko, A.V.Sorokin1, P.V.Mateychenko2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals",National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In present study, we report on synthesis of fluorescent GdVO4:Eu3+ nanoparticle-embedded CaCO3 microparticles (CaCO3@GdVO4:Eu3+) and their characterization. Synthesized CaCO3@GdVO4:Eu3+ microspheres are of vaterite polymorph and about 2 <$E mu>m diameter with -12.80±0.82 mV zeta potential. The specific surface area of the CaCO3@GdVO4:Eu3+ microspheres and pore size distribution were analyzed by Brunauer-Emmett-Teller method. The microparticles was classified as macroporous ones with a wide distribution of pore sizes.The specific surface area for CaCO3@GdVO4:Eu3+ microspheres (SBET = 25.2 m2/g) is higher than reported for CaCO3 microparticles obtained without any additives. CaCO3@GdVO4:Eu3+ microspheres exhibit strong fluorescence both in a water solution and under fluorescent microscopy conditions that makes them attractive for bio-related application.

Keywords: 
nanoparticles, microspheres, luminescence, porosity, specific surface area.
References: 

1. D.Liu, F.Yang, F.Xiong et al., Theranostics, 6, 1306 (2016). https://doi.org/10.7150/thno.14858

2. K.Kim, D.Pack, BioMEMS Biomed Nanotechn, 1, 19 (2015).

3. J.Panyam, V.Labhasetwar, Adv. Drug Delivery Rev., 55, 329 (2003). https://doi.org/10.1016/S0169-409X(02)00228-4

4. N.P.Omorphos, L.Kahn, D.M.Kalaskar, Colloids and Surf. B: Biointerfaces, 136, 440 (2015).

5. P.Newman, A.Minett, R.Ellis-Behnke et al., Nanomedicine, 9, 1139 (2013). 1 https://doi.org/10.1016/j.nano.2013.06.001

6. H.M.Hertz, J.C.Larsson, U.Lundstrom et al., Opt. Lett., 39, 2790 (2014). https://doi.org/10.1364/OL.39.002790

7. C.Sun, J.S.H. Lee, M.Zhang, Adv. Drug Delivery Rev., 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018

8. L.Zhang, F.X.Gu, J.M.Chan et al., Clinical Pharmacology & Therapeutics, 83, 761 (2008). https://doi.org/10.1038/sj.clpt.6100400

9. A.Zaccaria, A.Bouamrani, L.Selek et al., ACS Chem. Neurosci., 4, 385 (2013). https://doi.org/10.1021/cn300116g

10. J.B.Wolinsky, Y.L.Colson, M.W.Grinstaff, J. Control. Release, 159, 14 (2012). https://doi.org/10.1016/j.jconrel.2011.11.031

11. W.Qin, K.Li, G.Feng et al., Adv. Funct. Mater., 24, 635 (2014). https://doi.org/10.1002/adfm.201302114

12. C.-L.Sun, T.Li, J.-Q.Jiang et al., J. Mater. Chem. B, 4, 7226 (2016). h https://doi.org/10.1039/C6TB01782G

13. N.Butoescu, Ch.A.Seemayer, G.Palmer et al., Arthritis Research & Theraphy, 11, R72 (2009). 1

14. S.Haruta, T.Hanafusa, H.Fukase et al., DiabetesTech. Ther., 5, 1 (2003). https://doi.org/10.1089/152091503763816409

15. M.Higaki, M.Kameyama, M.Udagawa et al., Diabetes Tech. Ther., 8, 369 (2006). https://doi.org/10.1089/dia.2006.8.369

16. W.Yang, D.Trau, R.Renneberg et al., J. Coll. Interface Sci., 234, 356 (2001). https://doi.org/10.1006/jcis.2000.7325

17. T.Patino, J.Soriano, L.Barrios et al., Sci. Rep., 5, 11371 (2015). https://doi.org/10.1038/srep11371

18. J.Wang, H.Cui, Theranostics, 6, 1274 (2016). https://doi.org/10.7150/thno.16479

19. Y.Geng, P.Dalhaimer, S.Cai et al., Nat. Nanotechnol., 2, 249 (2007). https://doi.org/10.1038/nnano.2007.70

20. K.Y.Win, E.Ye, C.P.Teng et al., Adv. Healthcare Mater., 2, 1571 (2013). https://doi.org/10.1002/adhm.201300077

21. M.Behra, N.Azzouz, S.Schmidt et al., Biomacromolecules, 14, 1927 (2013). https://doi.org/10.1021/bm400301v

22. D.Volodkin, Adv. Colloid Interf. Sci., 207, 306 (2014). https://doi.org/10.1016/j.cis.2014.04.001

23. D.B.Trushina, T.V.Bukreeva, M.V.Kovalchuk et al., Mater. Sci. Engin. C, 45, 644 (2014). https://doi.org/10.1016/j.msec.2014.04.050

24. Y.Boyjoo, V.K.Pareek, J.Liu, J. Mat. Chem. A, 2, 14270 (2014). https://doi.org/10.1039/C4TA02070G

25. Y.Ueno, H.Futagawa, Y.Takagi et al., J. Control. Release, 103, 93 (2005). https://doi.org/10.1016/j.jconrel.2004.11.015

26. D.V.Volodkin, N.I.Larionova, G.B.Sukhorukov, Biomacromolecules, 5, 1962 (2004). https://doi.org/10.1021/bm049669e

27. C.Peng, Q.Zhao, C.Gao, Colloid Surface A, 353, 132 (2010). https://doi.org/10.1016/j.colsurfa.2009.11.004

28. C.Wang, C.He, Z.Tong et al., Int. J. Pharm., 308, 160 (2006). https://doi.org/10.1016/j.ijpharm.2005.11.004

29. S.Haruta, T.Hanafusa, H.Fukase et al., DiabetesTech. Ther., 5, 1 (2003). https://doi.org/10.1089/152091503763816409

30. M.Higaki, M.Kameyama, M.Udagawa et al., DiabetesTech. Ther., 8, 369 (2006). https://doi.org/10.1089/dia.2006.8.369

31. J.Wang, J.-S.Chen, J.-Y.Zong et al., J. Phys. Chem. C, 114, 18940 (2010). https://doi.org/10.1021/jp105906p

32. C.Bouzigues, T.Gacoin, A.Alexandrou, Acs Nano, 11, 8488 (2011). https://doi.org/10.1021/nn202378b

33. J.Shen, L.-D.Sun, C.-H.Yan, Dalton. Trans., 14, 5687 (2008). https://doi.org/10.1039/b805306e

34. V.K.Klochkov, A.I.Malyshenko, O.O.Sedyh et al., Functional Materials, 1, 111 (2011).

35. B.C.Chakoumakos, M.M.Abraham, L.A.Boatner, J. Solid State Chem., 109, 197 (1994). https://doi.org/10.1006/jssc.1994.1091

36. J.A.Baglio, G.Gashurov, Acta Cryst. B, 24, 292(1968). https://doi.org/10.1107/S0567740868002189

37. C.Hsu, R.C.Powell, J. Luminescence, 10, 273 (1975). h https://doi.org/10.1016/0022-2313(75)90051-4

38. A.Huignard, V.Buissette, A.C.Franville et al., J. Phys. Chem. B, 107, 6754 (2003). h https://doi.org/10.1021/jp0342226

39. S.Ouhenia, D.Chateigner, M.A.Belkhir et al., J. Cryst. Growth, 310, 2832 (2008). https://doi.org/10.1016/j.jcrysgro.2008.02.006

40. N.A.N.Hanafy, M.L.De Giorgi, C.Nobile et al., J. Basic Appl. Sci., 4, 60 (2015).

41. F.A.Andersen, L.Brecevic, Acta Chem. Scand., 45, 1018 (1991). https://doi.org/10.3891/acta.chem.scand.45-1018

42. J.Chen, L.Xiang, Powder Technol., 189, 64 (2009). https://doi.org/10.1016/j.powtec.2008.06.004

43. H.Nebel, M.Neumann, C.Mayer, Matthias Epple, Inorg. Chem., 47, 7874 (2008). https://doi.org/10.1021/ic8007409

44. C.Du, J.Shi, L.Zhang et al., Mater. Sci. Eng. C, 33, 3745 (2013). https://doi.org/10.1016/j.msec.2013.05.004

45. A.Bragaru, M.Kusko, A.Radoi, Cent. Eur. J. Chem., 11, 205 (2013).

46. J.Tang, A.P.Alivistatos, Nano Lett., 6, 2701 (2006). https://doi.org/10.1021/nl0615930

47. D.K.Kanchan, H.R.Panchal, Turk. J. Phys., 22, 989 (1998).

48. D.Lin-Vien, N.Colthup, W.Fateley et al., The Handbook of IR and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York (1991).

49. J.B.Condon, Surface Area and Porosity Determinations by Physisorption: Measurement and Theory, Elsevier, Amsterdam (2006).

50. S.J.Cregg, K.S.W.Sing, Adsorption, Surface Area and Porosity, Academic Press, London, New York (1967)

Current number: