Funct. Mater. 2017; 24 (3): 420-426.

doi:https://doi.org/10.15407/fm24.03.420

Internal stresses and magnetic properties of Fe-Co electrolytic coatings

V.O.Proskurina, I.Yu.Yermolenko, S.I.Zyubanova, I.G.Shipkova, B.A.Avramenko, Yu.I.Sachanova

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine

Abstract: 

Consideration was given to the effect of electrolysis parameters on the composition and the properties of electrolytic iron-cobalt film coatings obtained from citrate electrolytes. The interconnection between the film composition and the film thickness with its internal stresses and magnetic properties has been studied. It was established that Fe60Co40 alloys show the lowest level of internal stresses for the saturation induction of 1.8 to 2.1. Tl.

Keywords: 
coercive force, Fe-Co galvanic alloy, internal stresses, magnetic properties.
References: 

. L.Petera, A.Csikb, K.Vadb, E.Toth-Kadara, A.Pekkera, G.Molnarc, Electrochim. Acta, 55, 4734 (2010). https://doi.org/10.1016/j.electacta.2010.03.075

2. F.Lallemand, L.Ricq, E.Deschaseaux, L.De Vettor, P.Bercot, Surf. Coat. Technol., 197, 10 (2005). https://doi.org/10.1016/j.surfcoat.2005.01.038

3. R.Bosart, Ferromagnetism, Inostrannaya literature, Moscow (1956) [in Russian].

4. M.V.Ved', N.D.Sakhnenko, A.V.Karakurchi et al., Zh. Prikl. Chimii, 87(3), 276 (2014).

5. P.L.Cavallotti, A.Vicenzo, M.Bestetti, S.Franz, Surf. Coat. Technol., 169-170, 76 (2003).

6. N.Tsyntsaru, H.Cesiulis, M.Donten, J.Sort, E.Pellicer, E.J.Podlaha-Murphy, Surf. Engineering Appl. Electrochem., 48, 491 (2012). https://doi.org/10.3103/S1068375512060038

7. E.I.Cooper, C.Bonhote, J.Heidmann et al., IBM J. Res. Develop., 49, 79 (2005). https://doi.org/10.1147/rd.491.0103

8. Wei Lu, Ping Huang, Chenchong He and Biao Yan, Int. J. Electrochem. Sci., 7, 12262 (2012).

9. A.V.Karakurkchi, M.V.Ved', N.D.Sakhnenko, et al., Functional Materials, 22, 2 (2015). https://doi.org/10.15407/fm22.02.181

10. N.V.Myung, K.Nobe, J. Electrochem. Soc., 148, 3 (2001). https://doi.org/10.1149/1.1357188

11. N.D.Sakhnenko, M.V.Ved, Yu.K.Hapon, T.A.Nenastina, Zh. Prikl. Chimii, 88(12), 1941 (2015).

12. J.Zarpellon, H.F.Jurca, N.Mattoso et al., J. Colloid Interface Sci., 316, 2 (2007). https://doi.org/10.1016/j.jcis.2007.08.032

13. Koay Mei Hyie, Wan Normimi Roslini Abdullah, Nor Azrina Resali et al., J. Nanomaterials, 2013, (2013).

14. S. Mehrizi, M. Heydarzadeh Sohi, J. Mater. Sci.: Mater. Electron., 26, 7381 (2015).

15. E.Gomez, E.Pellicer, X.Alcobe, E.Valles, J. Solid State Eleбtrochem., 8, 497 (2004). https://doi.org/10.1007/s10008-004-0495-z

16. E.Gomez, E.Pellicer, E.Valles, J. Electroanal. Chem., 568, 29 (2004). https://doi.org/10.1016/j.jelechem.2003.12.032

17. N.Tsyntsaru, H.Cesiulis, E.Pellicer, J.-P.Celis, J. Sort, Electrochimica Acta, 104, 94 (2013). https://doi.org/10.1016/j.electacta.2013.04.022

18. N.V.Myung, D.-Y.Park, D.E.Urgiles et al., Electrochim. Acta, 49 (2004).

19. Patent. UA 49037 (2010).

20. Technology of Thin Films. Reference book Ed. Maysella, GlengaR.T, V.2: Moscow: Sov.Radio., 768p. (1997) [in Russian].

Current number: