Funct. Mater. 2017; 24 (3): 434-441.

doi:https://doi.org/10.15407/fm24.03.434

Kirchhoff and electron curvature indexes for SiC nanoclusters

A.V.Luzanov

SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

To characterize carborundum nanoclusters (nano-SiC) we employ the topological Kirchhoff index and average energy of molecular graphs. Additionally, electron-kinematic indexes which reflect an average curvature of electron paths in molecule, are invoked. The main polytypes, namely, 3C-SiC and 2pH-SiC, p = 1÷4, are investigated. It is established that the topological indexes make only a slight distinction between nano-SiC of the different polytypes. Quite the opposite, the electron curvature indexes provide a clear discrimination of the polytypes. In particular, the curvature indexes are ordered just in the same manner as the hexagonality measure known for such polytypes. For the electron curvatures, an effective algorithm is elaborated, allowing us to analyze nano-SiC with 104 and more atoms even by using laptops.

Keywords: 
carborundum polytypes, topological indexes, quantum kinematics, resistance distances, bipartite networks, hexagonality.
References: 

1. J.L.Fan, X.L.Wu, P.K.Chu, Progr. Mater. Sci., 51, 983 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.001

2. Z.C.Feng, SiC Power Materials - Devices and Applications, Springer, Berlin (2004).

3. J Fan, P.K.Chu, Silicon Carbide Nanostructures: Fabrication, Structure, Springer, Berlin (2014).

4. Optical Engineering of Diamond, ed. by C.R.P.Mildren, J.R.Rabeau, Wiley, Berlin (2013).

5. Quantum Information Processing with Diamond, ed. by S.Prawer, I.Aharonovich, Elsevier LTD, Cambridge (2014).

6. A.Gali, A.Gallstrom, N.T.Son, E.Janzen, Mater. Sci. Forum, 645-648, 395 (2010).

7. A.L.Falk, B.B.Buckley, G.Calusine et al., Nature Commun., 4, 1819 (2013). https://doi.org/10.1038/ncomms2854

8. D.J.Christle, A.L.Falk, P.Andrich et al., Nature Mater., 14, 160 (2015). https://doi.org/10.1038/nmat4144

9. H.Seo, A.L.Falk, P.V.Klimov et al., Nature Commun., 7, 12935 (2016). https://doi.org/10.1038/ncomms12935

10. A.V.Luzanov, E.N.Babich, J. Mol. Struct. (Theochem), 333, 279 (1995). https://doi.org/10.1016/0166-1280(94)03944-G

11. A.V.Luzanov, D.Nerukh, Functional Materials, 12, 55 (2005).

12. A.V.Luzanov, Vestnik Kharkiv Univ., 28, 35 (2017).

13. N.Trinajstic, Chemical Graph Theory, 2nd ed, CRC, Boca Raton, FL (1992).

14. M.V.Diudea, I.Gutman, J.Lorentz, Molecular Topology, Nova, Huntington, N.Y, (2001).

15. D.Klein, M.Randic, J. Math. Chem., 12, 81 (1993). https://doi.org/10.1007/BF01164627

16. I.Gutman, B.Mohar, J. Chem. Inf. Comput. Sci., 36, 982 (1996). https://doi.org/10.1021/ci960007t

17. R.Merris, Linear Algebra Appl., 197-198, 143 (1994).

18. B.Zhou, N.Trinajstic, J. Math. Chem., 46, 283 (2009). https://doi.org/10.1007/s10910-008-9459-3

19. W.Wang, D.Yang, Y.Luo, Discrete Appl. Math., 161, 3063 (2013). https://doi.org/10.1016/j.dam.2013.06.010

20. G.E.Uhlenbeck, G.W.Ford, Lectures in Statistical Mechanics, AMS, Providence (1963).

21. F.H.Stillinger, E.Helfand, J. Chem. Phys., 41, 2495 (1964). https://doi.org/10.1063/1.1726293

22. E.Eichinger, Macromolecules, 18, 211 (1985); Y.Yang, Macromol. Theory Simul., 7, 521 (1998). https://doi.org/10.1002/(SICI)1521-3919(19980901)7:5<521::AID-MATS521>3.0.CO;2-M

23. A.V.Luzanov, Vestnik Kharkiv Univ., 14, 14 (2006).

24. A.V.Luzanov, E.N.Babich, Struct. Chem., 3, 175 (1992). https://doi.org/10.1007/BF00678414

25. MATHEMATICA-5.2, Wolfram Research Champaign, IL (2010).

26. W.H.Backes, P.A.Bobbert, W.van Haeringen, Phys. Rev, B, 49, 7564 (1994).

27. F.Bechstedt, A.Bellabes, J. Phys.:Condens. Matter, 273201 (2013).

28. C.Raffy, J.Furthmuller, F.Bechstedt, Phys. Rev. B, 66, 075201 (2002). https://doi.org/10.1103/PhysRevB.66.075201

29. Y-i.Matsushita, S.Furuya, A.Oshiyama, Phys. Rev. Lett., 108, 246404 (2012). https://doi.org/10.1103/PhysRevLett.108.246404

30. X.Li, I.Gutman, Graph Energy, Springer, New York (2012).

31. A.R.Verma, P.Krishna, Polymorphism and Polytypism in Crystals, Wiley, NewYork (1966).

32. L.S.Ramsdell, J.A.Kohn, Acta Cryst., 5, 215 (1952). https://doi.org/10.1107/S0365110X52000617

33. A.V.Luzanov, Functional Materials, 22, 514 (2014); A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016).

34. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017). https://doi.org/10.1063/1.4975196

35. G.G.Hall, Proc. Roy. Soc., A229, 251 (1955).

Current number: