Funct. Mater. 2017; 24 (3): 457-462.

doi:https://doi.org/10.15407/fm24.03.457

The alternative approach to the preparation of complex calcium phosphates and their characterization

Ok.Livitska, N.Strutynska, Ol.Livitska, N.Slobodyanik

Chemistry Department, T. Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine

Abstract: 

In this paper a new approach to the preparation of complex calcium-containing phosphates using molten chlorides and nitrates of alkaline metals as fluxes was described. The main advantages of used technique for synthesis of double phosphates comparing with traditional methods (solid state reactions or crystallization of a high temperature self-flux) were discussed. It was found that the phase composition of obtained crystalline products depends on type of salt melts, nature of alkaline metals and type of initial components. Formation conditions for compounds MICaPO4, MI2CaP2O7 (MI - Na, K), Ca2P2O7, Ca2PO4Cl and Ca10(PO4)6Cl2 were established. The synthesized phosphates were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy and optical microscopy.

Keywords: 
calcium phosphates, molten chlorides and nitrates, flux.
References: 

1. K.N.Shinde, S.J.Dhoble, A.Kumar, J. Rare Earths, 29, 527 (2011). https://doi.org/10.1016/S1002-0721(10)60492-9

2. Z.Yang, G.Yanga, S.Wang et al., Mater. Lett., 62, 1884 (2008). https://doi.org/10.1016/j.matlet.2007.10.030

3. B.K.Grandh, V.R.Bandi, K.Jang et al., Ceram. Int., 38, 6273 (2012). https://doi.org/10.1016/j.ceramint.2012.04.082

4. Y.Wang, M.G.Brik, P.Dorenbos et al., J. Phys. Chem. C, 118, 7002 (2014). https://doi.org/10.1021/jp500110f

5. Y.Wang, J.Zhang, D.Hou et al., Opt. Mater., 34, 1214 (2012). https://doi.org/10.1016/j.optmat.2012.01.033

6. J.Hu, H.Xie, Y.Huang et al., Appl. Phys. B: Lasers Opt., 114, 461 (2014).

7. S.Zhang, Y.Huang, W.Kai et al., Solid State Lett., 13, J11 (2010).

8. K.N.Shinde, S.J.Dhoble, A.Kumar, Physica B, 406, 94 (2011). https://doi.org/10.1016/j.physb.2010.10.028

9. D.K.Yima, I.S.Cho, C.W.Lee et al., Opt. Mater., 33, 1036 (2011). https://doi.org/10.1016/j.optmat.2011.02.031

10. B.K.Grandhe, V.R.Bandi, K.Jang et al., J. Alloys Compd., 509, 7937 (2011). https://doi.org/10.1016/j.jallcom.2011.05.044

11. B.V.Ratnam, M.Jayasimhadri, G.Bhaskar Kumar et al., J. Alloys Compd., 564, 100 (2013). https://doi.org/10.1016/j.jallcom.2013.01.203

12. L.Guan, C.Liu, X.Li et al., Mater. Res. Bull., 46, 1496 (2011). https://doi.org/10.1016/j.materresbull.2011.04.023

13. S.Zhang, Y.Huang, H.J.Seo, J. Electrochem. Soc., 157, J261 (2010).

14. C.Qin, Y.Huang, L.Shiet, J. Phys. D: Appl. Phys., 42, 185105 (2009).

15. S.Jalota, S.B.Bhaduri, A.C.Tas, J. Biomed. Mater. Res., 80, 304 (2007). https://doi.org/10.1002/jbm.b.30598

16. R.Pang, C.Li, S.Zhang et al., Mater. Chem. Phys., 113, 215 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.061

17. Z.Hao, J.Zhang, X.Zhang et al., J. Luminescence, 128, 941 (2008). https://doi.org/10.1016/j.jlumin.2007.11.035

18. N.Ta, D.Chen, J. Alloys Compd., 484, 514 (2009). https://doi.org/10.1016/j.jallcom.2009.04.150

19. J.H.Hong, J.M.Lee, H.Kim et al., Appl. Catal., A:396, 194 (2011).

20. J.J.Bian, D.W.Kim, K.S.Hong, Mater. Lett., 58, 347 (2004). https://doi.org/10.1016/S0167-577X(03)00498-1

21. J.J.Bian, D.W.Kim, K.S.Hong, J. Eur. Ceram. Soc., 23, 2589 (2003). https://doi.org/10.1016/S0955-2219(03)00138-9

22. F.Xiao, E.H.Song, Q.Y.Zhang, Spectrochim. Acta, Part A, 122, 343 (2014). https://doi.org/10.1016/j.saa.2013.10.078

23. E.Song, W.Zhaon, X.Dou et al., J. Luminescence., 132, 1462 (2012). https://doi.org/10.1016/j.jlumin.2012.01.004

24. J.Bennazha, M.Zahouily, S.Sebti et al., Catal. Commun., 2, 101 (2001). https://doi.org/10.1016/S1566-7367(01)00015-2

25. M.Zahouily, Y.Abrouki, A.Rayadh, Tetrahedron Lett., 43, 7729 (2002). https://doi.org/10.1016/S0040-4039(02)01846-4

26. M.Zahouily, M.Salah, J.Bennazhaet et al., Tetrahedron Lett., 44, 3255 (2003). https://doi.org/10.1016/S0040-4039(03)00630-0

27. E.Song, W.Zhao, G.Zhou et al., Curr. Appl. Phys., 11, 1374 (2011). https://doi.org/10.1016/j.cap.2011.04.006

28. J.A.Wani, N.S.Dhoble, N.S.Kokode et al., Adv. Mater. Lett., 5, 459 (2014). https://doi.org/10.5185/amlett.2014.amwc.1211

29. Y.C.Chiu, W.R.Liu, C.K.Changet et al., J. Mater. Chem., 20, 1755 (2010). https://doi.org/10.1039/b920610h

30. D.Y.Wang, Y.C.Chiu, C.H.Huang et al., J. Lumin., 148, 151 (2014). https://doi.org/10.1016/j.jlumin.2013.11.082

31. R.Yu, C.Guo, T.Li et al., Curr. Appl. Phys., 13, 880 (2013). https://doi.org/10.1016/j.cap.2012.12.020

32. Y.C.Chiu, W.R.Liu, C.K.Chang et al., J. Rare Earths, 28, 250 (2010). https://doi.org/10.1016/S1002-0721(10)60374-2

33. R.J.Wiglusz, Z.Drulis-Kawa, R.Pazik et al., Dalton Trans., 44, 6918 (2015). https://doi.org/10.1039/C5DT00046G

34. M.Mehnaoui, R.Ternane, G.Panczer et al., J. Phys.:Condens. Matter., 20, 275227 (2008).

35. R.Pazik, J.M.Nedelec, R.J.Wiglusz, Cryst. Eng. Comm., 16, 5308 (2014). https://doi.org/10.1039/C4CE00197D

36. O.V.Livitska, N.Yu.Strutynska, I.V.Zatovsky et al., Solid State Phenom., 230, 297 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.297

37. O.V.Livitska, N.Yu.Strutynska, I.V.Zatovsky et al., Cryst. Res. Technol., 50, 626 (2015). https://doi.org/10.1002/crat.201500028

38. O.Livitska, N.Strutynska, I.Zatovsky et al., J. Cryst. Growth.,434, 30 (2016). https://doi.org/10.1016/j.jcrysgro.2015.10.023

39. M.Greenblatt, E.Banks, B.Post, Acta Crystallogr., 23, 166 (1967). https://doi.org/10.1107/S0365110X67002294

40. J.Bennazha, A.Boukhari, E.M.Holt, Solid State Sci., 1, 373 (1999). https://doi.org/10.1016/S1293-2558(00)80091-6

41. M.Ben Amara, M.Vlasse, G.Le Flem et al., Acta Crystallogr. C, 39, 1483 (1983). https://doi.org/10.1107/S0108270183008963

42. K.Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A, 5th ed, John Wiley&Sons, New York (1997).

Current number: