Funct. Mater. 2017; 24 (3): 481-489.

doi:https://doi.org/10.15407/fm24.03.481

Preparation and characterization of mortar mixes containing organic acid/expanded vermiculite composite PCM

Xinzhong Zhang1, Weizhun Jin1, Yajun Lv2, Haibin Zhang3, Weibing Zhou4, Fangyi Ding2

1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Henan, Zhengzhou, 450045, China
2 School of Architecture, North China University of Water Resources and Electric Power, Henan, Zhengzhou 450045, China
3 Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, 400030, China
4 School of Materials Science and Engineering, Wuhan University of Technology, Hubei, Wuhan, 430070, China

Abstract: 

In this paper, capric acid (CA) and palmitic acid (PA) binary PCM/expanded vermiculite (CA-PA/EVM) form stable composite PCM (FS-CPCM) was firstly synthesized by adsorption method. The EVM had the optimal adsorption rate when the mass ratio of CA-PA to EVM was 45:55. The FT-IR results indicated that there was no chemical reaction between binary PCM and EVM. After the thermal cycles for 50 times, the mass loss of the prepared CA-PA/EVM FS-CPCM was 2.8%. However, the latent heat was reduced by 16.10%. Furthermore, thermal energy storage (TES) mortar mixes were prepared by replacing sand aggregates with the fabricated CA-PA/EVM FS-CPCM. The effect of replacing sand aggregates with CA-PA/EVM FS-CPCM on compressive and flexural strength of the mortar mixes was investigated by mechanical experiments. The prepared mortar mixes with CA-PA/EVM FS-CPCMs aggregate exhibited good thermal performance and could be preferentially potential PCM for thermal regulation and energy saving in buildings.

Keywords: 
Capric acid, palmitic acid, expanded vermiculite, thermal energy storage, mortar mixes.
References: 

1. L. Yang, H.Y. Yan, J.C. Lam, , Appl Energ, 115, 164, 2014. https://doi.org/10.1016/j.apenergy.2013.10.062

2. D. Zhou, C.Y. Zhao, Y. Tian, Appl Energ, 92, 593, 2012. https://doi.org/10.1016/j.apenergy.2011.08.025

3. R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, A. Elayaperumal, Renew.Sust.Energ.Rev., 16, 2394, 2012. https://doi.org/10.1016/j.rser.2012.01.058

4. U. Stritih and V. Butala, Int J.Refrig., 33, 1676, 2010. https://doi.org/10.1016/j.ijrefrig.2010.07.017

5. G. Zhou, Y. Zhang, X. Wang, K. Lin, W. Xiao, Sol Energ, 81, 1351, 2007. https://doi.org/10.1016/j.solener.2007.01.014

6. S.A. Memon, Renew.Sust.Energ.Rev.,31,870, 2014. https://doi.org/10.1016/j.rser.2013.12.042

7. A. Karaipekli, A. Sarэ, Sol. Energ. Mater. Sol.C., 149, 19, 2016. https://doi.org/10.1016/j.solmat.2015.12.034

8. Y. Hong and G. Xin-shi, Sol. Energ. Mater. Sol.C, 64, 37, 2000. https://doi.org/10.1016/S0927-0248(00)00041-6

9. D.A. Kontogeorgos, G.K. Semitelos, I.D. Mandilaras, M.A. Founti, Fire Safety J, 81, 8, 2016. https://doi.org/10.1016/j.firesaf.2016.01.012

10. B. Mohammadi, F.S. Najafi, H. Ranjbar, J. Mohammadi, M. Zakaryazadeh, Energ Build, 118, . 99, 2016.

11. A. Karaipekli, A. Sarэ, J .Ind. Eng. Chem., 16, 767, 2010. https://doi.org/10.1016/j.jiec.2010.07.003

12. X. Li, H. Wei, X. Lin, X. Xie, Sol. Energ. Mater. Sol.C., 155, 9, 2016. https://doi.org/10.1016/j.solmat.2016.04.057

13. H. Wei, X. Xie, X. Li, X. Lin, Appl Energ, 178, 616, 2016. https://doi.org/10.1016/j.apenergy.2016.06.109

14. X. Xiao, P. Zhang, M. Li, Energ Conv. Manag, 105, 272, 2015. https://doi.org/10.1016/j.enconman.2015.07.074

15. Y.J. Lv, W.B. Zhou, W.Z. Jin, Energ. Build., 111, 242, 2016. https://doi.org/10.1016/j.enbuild.2015.11.042

16. J. Zhang, X. Guan, X. Song, H. Hou, Z. Yang, and J. Zhu, Energ. Build., 92, 155, 2015. https://doi.org/10.1016/j.enbuild.2015.01.063

17. C. Jiao, B. Ji, D. Fang, Mat. Lett., 67, 352., 2012.

18. L. Jiesheng, Y. Yuanyuan, H. Xiang, Energ. Build.,110, 108, 2016. https://doi.org/10.1016/j.enbuild.2015.10.043

19. A. Sarэ, A. Karaipekli, Mater. Chem, Phys., 109, 459, 2008.

20. D. Zhang, S. Tian, D. Xiao, Sol Energ, 81, 653, 2007. https://doi.org/10.1016/j.solener.2006.08.010

21. X. Fang, Z. Zhang, Z. Chen, Energ Conv.Manag., 49, 718, 2008. https://doi.org/10.1016/j.enconman.2007.07.031

22. Y. Wang, H. Zheng, H.X. Feng, D.Y. Zhang, Energ.Build., 47, 467, 2012. https://doi.org/10.1016/j.enbuild.2011.12.021

23. Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil, S.A. Korili, Powd. Techn., 189, 2, 2009. https://doi.org/10.1016/j.powtec.2008.06.013

Current number: