Funct. Mater. 2017; 24 (4): 541-546.

doi:https://doi.org/10.15407/fm24.04.541

Structural and optical study of ZnS thin films prepared by radio frequency magnetron sputtering at different substrate temperatures

Le Kong, Jinxiang Deng, Liang Chen, Zhen Shen, Jiyou Wang

College of Applied Sciences, Beijing University of Technology, 100124 Beijing, China

Abstract: 

ZnS thin films were deposited by radio frequency (RF) sputtering with substrate temperatures from room temperature to 400°C. The effect of substrate temperature on structural and optical properties for the ZnS films was investigated. The systematic investigation at different substrate temperatures of the properties of sputtered ZnS films especially optical constants obtained through spectroscopic ellipsometry can provide some guidance for ZnS films to be applied in thin film solar cells as buffer layers. The choice of sputtering fabrication method may promote the full sputtering technique route in CIGS or CZTS solar cells which is beneficial to the solar cell industrialization.

Keywords: 
ZnS thin films, RF magnetron sputtering, Urbach energy, Spectroscopic ellipsometry.
References: 

1. V.Kumar, D.K.Dwivedi, Optik, 124, 2345 (2013). https://doi.org/10.1016/j.ijleo.2012.06.094

2. P.Jackson, D.Hariskos, E.Lotter et al., Prog. Photovolt. Res. Appl., 19, 894 (2011). https://doi.org/10.1002/pip.1078

3. P.Chelvanathan, Y.Yusoff, F.Haque et al., Applied Surface Science, 334, 138 (2015). https://doi.org/10.1016/j.apsusc.2014.08.155

4. T.Nakada, M.Mizutani, Y.Hagiwara, A.Kunioka, Sol. Energy Mater. Sol. Cells, 67, 255 (2001). https://doi.org/10.1016/S0927-0248(00)00289-0

5. Y.Bouznit, Y.Beggah, A.Boukerika et al., Applied Surface Science, 284, 936 (2013). https://doi.org/10.1016/j.apsusc.2013.03.155

6. D.H.Hwang, J.H.Ahn, K.N.Hui et al., Nanoscale Research Letters, 7, 26 (2012). https://doi.org/10.1186/1556-276X-7-26

7. P.K.Nair, M.T.S.Nair, V.M.Garcia et al., Solar Ener Mater Solar Cells, 52, 313 (1998). https://doi.org/10.1016/S0927-0248(97)00237-7

8. M.A.Islam, M.S.Hossain, M.M.Aliyu et al., 7th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh (2012).

9. S.W.Shin, S.R.Kang, J.H.Yun et al., Sol. Energy Mater. Sol. Cells, 95, 970 (2009).

10. S.Tec-Yam, J.Rojas, V.Rejon, A.I.Oliva, Materials Chemistry and Physics, 136, 386 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.063

11. S.Takata, T.Minami, T.Miyata, H.Nanto, J. Crystal Growth, 86, 257 (1988). https://doi.org/10.1016/0022-0248(90)90726-2

12. M.M.Islam, S.Ishizuka, A.Yamada et al., Solar Energy Materials & Solar Cells, 93, 856 (2011).

13. R.A.Bhuiyan, M.M.Alam, M.A.Momin, Turk. J. Phys., 34, 43 (2010).

14. L.X.Shao, K.H.Chang, H.L.Hwang, App. Surf. Sci., 212-213, 305 (2003). https://doi.org/10.1016/S0169-4332(03)00085-0

15. X.Liu, H.Cui, C.Kong et al., Appl. Phys. Lett., 106, 131110 (2015). https://doi.org/10.1063/1.4916994

16. Y.P.Venkata Subbaiah, P.Prathap, K.T.Ramakrishna Reddy, App. Surf. Sci., 253, 2409 (2006). https://doi.org/10.1016/j.apsusc.2006.04.063

17. Shuwen Xue, Ceramics International, 39, 6577 (2013). https://doi.org/10.1016/j.ceramint.2013.01.092

18. F.Urbach, Physical Review, 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

19. E.Burstein, Phys. Rev., 93, 632 (1954). https://doi.org/10.1103/PhysRev.93.632

20. J.W.Weber, V.E.Calado, M.C.M. van de Sanden, Appl. Phys. Lett., 97, 091904 (2010). https://doi.org/10.1063/1.3475393

21. D.Datta, S.Kumar, J. Appl. Phys., 106, 074517 (2009). https://doi.org/10.1063/1.3239853

22. H.R.Shakur, Physica E, 44, 641 (2011). https://doi.org/10.1016/j.physe.2011.10.021

.

Current number: