Funct. Mater. 2017; 24 (4): 563-571.

doi:https://doi.org/10.15407/fm24.04.563

Electron-conformational rearrangement in nanocomposites films of poly-N-epoxypropylcarbazole with fullerenes C60

O.P.Olasyuk, O.P.Dmytrenko, M.P.Kulish, M.A.Zabolotnyy, H.Y.Borodina, T.O.Busko

Chair of Physics of Functional Materials, Faculty of Physics, T.Shevchenko National University of Kyiv, 2 Hlushkova Ave., 03022 Kyiv, Ukraine

Abstract: 

Optical absorption spectra, optical conductivity, refractive index n, extinction coefficient k and photoluminescence in nanocomposite films of poly-N-epoxypropylcarbazole (PEPC) with 0,7; 1,35; 2,5 and 4 wt.% of C60 molecules were studied. Substantial restructuring of these spectra with changing the fullerene C60 content was established not only in the intrinsic absorption, but also within the energy gap. Reducing the energy distance between states S1 and T1 with increasing concentration of C60 molecules was showed, as well as the appearance of additional broad structureless bands with a maximum near 700 nm in the long-wave photoluminescence spectrum. Restructuring of the spectra is associated with electron-conformational changes caused by appearance of the donor-acceptor interaction between components in the films PEPC-C60 due to formation of the complexes with charge transfer (CCT) in them.

Keywords: 
nanocomposites, poly-N-epoxypropylcarbazole, C<sub>60</sub> fullerenes, optical conductivity, optical absorption, photoluminescence, complexes with charge transfer.
References: 

1. L.Akcelrud, Prog. Polym. Sci., 28, 875 (2003). https://doi.org/10.1016/S0079-6700(02)00140-5

2. P.Auragudom, A.a.Tangonan, M.a G.Namboothiry et al., J. Polym. Res., 17, 347 (2010). https://doi.org/10.1007/s10965-009-9321-8

3. J. Kido, H.Shionoya, K.Nagai, Appl. Phys. Lett., 67, 2281 (1995). https://doi.org/10.1063/1.115126

4. S.Robu, D.Mitcov, G.Dragalinaetal, J. Non. Cryst. Solids, 355, 1840 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.04.073

5. C.W Lee, J.Y.Lee, Dye. Pigment., 103, 34 (2014). https://doi.org/10.1016/j.dyepig.2013.11.020

6. T.L.Makarova, Obzor. FTP, 35, 257 (2001).

7. N.A.Davidenko, N.A.Derevyanko, A.A.Ishchenko et al., Russ. Chem. Bullet. Intern. Edit., 53, 1674 (2004). https://doi.org/10.1007/s11172-005-0016-y

8. N.A.Davidenko, N.G.Spitsyna, A.S.Lobach et al., Theor. Exper. Chem., 42, 277 (2006). https://doi.org/10.1007/s11237-006-0053-0

9. N.A.Davidenko, N.A.Derevyanko, A.A.Ishchenko et al., High Energ. Chem., 40, 336 (2006). https://doi.org/10.1134/S0018143906050092

10. N.A.Davidenko, S.L.Studzinsky, A.N.Karapetyan et al., Op. Zhurn., 74, 41 (2007).

11. Y.Zheng, J.Xue, Polym. Rev., 50, 420 (2010). https://doi.org/10.1080/15583724.2010.516051

12. G.D.Sharma, J.a.Mikroyannidis, S.S.Sharma et al., Dye. Pigment., 94, 320 (2012). https://doi.org/10.1016/j.dyepig.2011.12.008

13. H.Cao, W.He, Y.Mao et al., J. Power Sources, 264, 168 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.080

14. G.Yu.A. J.Heeger, J. Appl. Phys., 78, 4510 (1995). https://doi.org/10.1063/1.359792

15. P.W.M.Blom, V.D.Mihailetchi, L.J.A.Koster et al., Adv. Mater., 19, 1551 (2007). https://doi.org/10.1002/adma.200601093

16. T.N.Nahodkin, V.K.Perepelitsa, Ukr. Fiz. Zh., 35, 1304 (1990).

17. A.O.Matkovskiy, A.N.Sudnik, O.N.Zhovtanetsky et al., Zh. Prukl. Spektr., 38, 374 (1983).

18. Y.P.Pyryatynsky, V.N.Yashchuk, Y.A.Cherkasov et al., Zh. Prukl. Spektr., 53, 41 (1990).

Current number: