Funct. Mater. 2017; 24 (4): 667-672.

doi:https://doi.org/10.15407/fm24.04.667

Effect of CuS, Mn3O4 and CeO2 additives on Co(II) sorption by ZnS particles

D.S.Sofronov1, A.O.Oreshina2, E.Yu.Bryleva1, E.M.Sofronova1, P.V.Mateichenko3, A.N.Puzan1

1State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

ZnS particles modified with Mn3O4, CeO2 and CuS were obtained from aqueous solutions. It was shown that addition of copper and manganese ions into the reagent mixture doesn't have any influence on particle formation from thiourea solutions (the spherical particles with diameter of 0.2-0.8 μm were obtained). Introduction of CeO2 (0.5-1 wt.%) favors particle size decrease up to 0.1-0.3 μm. Using Mn3O4, CeO2 for modification proved to be ineffective in enhancing Co sorption capacity of ZnS particles. Addition of CuS (1 wt.%) into the particles leads to the increase of Co uptake from 5.0 up to 23.0 mg/g owing to formation of ZnS/CuS core-shell structures with preferential cobalt ions sorption onto CuS surface.

Keywords: 
zinc sulphide, metal removal, cobalt sorption, sorption capacity.
References: 

1. A.Ozverdi, M.Erdem, J. Hazard. Mater., 137, 626 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.051

2. J.Liu, K.T.Valsaraj, I.Devai et al., J. Hazard. Mater., 157, 432 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.006

3. A.P.Krasnoperova, K.N.Belikov, D.S.Sofronov et al., Meth. Objects Chem. Anal., 8, 194 (2013).

4. D.S.Sofronov, K.N.Belikov, N.N.Kamneva et al., Sorp. Chromat. Proc., 14, 159 (2014).

5. A.V.Bulgakova, D.S.Sofronov, E.Yu.Brileva et al., Sorp. Chromat. Proc., 15, 366 (2015).

6. L.S.Balistrieri, Geochim. Cosmochim. Acta, 54, 739 (1990). https://doi.org/10.1016/0016-7037(90)90369-V

7. T.H.Con, J. Environ. Sci., 1, 69 (2013).

8. D.A.Kulik, Mineral. Mag., 62A, 826 (1998). https://doi.org/10.1180/minmag.1998.62A.2.102

9. Z.Zhi-liang, J. Environ. Sci., 19, 652 (2007). https://doi.org/10.1016/S1001-0742(07)60109-0

10. R.Han, J. Environ. Radioact., 93, 127 (2007). https://doi.org/10.1016/j.jenvrad.2006.12.003

11. W.Zou, J. Chem. Eng. Data, 51, 534 (2006). https://doi.org/10.1021/je0504008

12. K.G.Bhattacharyya, S.S.Gupta, Colloids Surf., A: Physicochem. Eng. Aspects, 317, 71 (2008). https://doi.org/10.1016/j.colsurfa.2007.09.037

13. R.A.Nyquist, R.O.Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, New York and London (1971).

14. A.Baykal, Y.Koseolu, M.Senel, Central Eur. J. Chem., 5, 169 (2007).

.

Current number: