Funct. Mater. 2017; 24 (4): 687-691.

doi:https://doi.org/10.15407/fm24.04.687

A liquid crystal-based sensitive element for optical sensors of cholesterol

M.V.Vistak1, V.E.Dmytrakh1, Z.M.Mykytyuk2, V.S.Petryshak2, Y.Y.Horbenko3

1D.Halytsky Lviv National Medical University, 69 Pekarska Str., 79010 Lviv, Ukraine
2Lviv Polytechnic National University, 12 S.Bandery Str., 79013 Lviv, Ukraine
3I.Franko National University of Lviv, 1 Universytetska Str., 79000 Lviv, Ukraine

Abstract: 

Composites based on cholesteric-nematic mixtures of nematic 5CB and cholesteric BLO-61 are proposed as active materials for cholesterol optical sensor.

Keywords: 
liquid crystal, optical sensor, cholesterol.
References: 

1. J.D.Brunzell, M.Davidson, C.D.Furberg et al., Lipoprotein management in patients with cardiometabolic risk: con-sensus statement from the American Diabetes Association and the American College of Cardiology Foundation, Diabetes Care 31, 811 (2008). https://doi.org/10.2337/dc08-9018 https://doi.org/10.2337/dc08-9018

2. S.Munir, M.Khan, S.Y.Park, Sensor Actuat B:Chemical, 220, 508 (2015).

3. H.G.Lee, S.Munir, S.Y.Park, ACS Appl. Mat. Inter., 8, 26407 (2016). https://doi.org/10.1021/acsami.6b09624

4. M.D.Marazuela, B.Cuesta, M.C.Moreno-Bondi, A.Quejido, Biosens. Bioelectron., 12, 233 (1997). https://doi.org/10.1016/S0956-5663(97)85341-9

5. W.T.Law, S.Doshi, J.McGeehan et al., Clin. Chem., 43, 384 (1997).

6. V.Malik, C.S.Pundir, Biotechnohem Appl. Bioc., 35, 191 (2002). https://doi.org/10.1042/BA20010101

7. C.S.Pundir, Curr. Appl. Phys, 3, 129 (2003). https://doi.org/10.1016/S1567-1739(02)00178-5

8. S.P.Singh, S.K.Arya, P.Pandey et al., Appl. Phys. Lett., 91, 063901 (2007). https://doi.org/10.1063/1.2768302

9. S.K.Arya, A.K.Prusty, S.P.Singh et al., Anal. Biochem., 363, 210 (2007). https://doi.org/10.1016/j.ab.2007.01.029

10. X.J.Wu, M.M.Choi, Anal. Chem., 75, 4019 (2003). https://doi.org/10.1021/ac020736+

11. G.K.Kouassi, J.Irudayaraj, G.McCarty, J. Nanobiotechn., 3, 1 (2005). https://doi.org/10.1186/1477-3155-3-1

12. S.K.Arya, P.R.Solanki, R.P.Singh et al., Talanta, 69, 918 (2006). https://doi.org/10.1016/j.talanta.2005.11.037

13. P.Pandey, S.P.Singh, S.K.Arya et al., Langmuir, 23, 3333 (2007). h https://doi.org/10.1021/la062901c

14. P.R.Solanki, S.K.Arya, Y.Nishimura et al., Langmuir, 23, 7398 (2007). https://doi.org/10.1021/la700350x

15. S.P.Martin, D.J.Lamb, J.M.Lynch, S.M.Reddy, Anal. Chim. Acta., 487, 91 (2003). https://doi.org/10.1016/S0003-2670(03)00504-X

16. M.Tyagi, A.Chandran, T.Joshi et al., Appl. Phys. Lett., 104, 154104 (2014). https://doi.org/10.1063/1.4871704

17. Y.Wei, C.H.Jang, J. Mater. Sci., 50, 4741 (2015). https://doi.org/10.1007/s10853-015-9027-8

18. Po-Chin Nien, Po-Yen Chen, Kuo-Chuan Ho, Sensors, 9, 1794 (2009). https://doi.org/10.3390/s90301794

19. S.Munir, S.Y.Park, Anal. Chim. Acta, 893, 101 (2015). https://doi.org/10.1016/j.aca.2015.08.051

20. O.Sushynskyi, M.Vistak, Z.Gotra et al., SPIE Photonics Europe. Intern. Soc. for Optics and Photonics (2014), p.91271F.

21. Z.Mykytyuk, A.Fechan, V.Petryshak et al., Modern Problems of Radio Engineering. Telecommunications and Computer Science (TCSET), 2016 13th Intern. Conf. IEEE (2016), p.402.

22. V.Petryshak, Z.Mikityuk, M.Vistak et al., Prz. Elektrotechniczn., 93, 117 (2017).

23. Niu, D.Luo, R.Chen et al., Opt. Commun., 381, 286 (2016). https://doi.org/10.1016/j.optcom.2016.07.016

.

Current number: