Funct. Mater. 2018; 25 (1): 006-012.

doi:https://doi.org/10.15407/fm25.01.006

Radiation resistance of composite scintillators containing grains of Y2SiO5:Ce or Y3Al5O12:Ce obtained by solid-phase synthesis

A.Yu.Boyarintsev1, N.Z.Galunov1,2, L.G.Levchuk3, E.V.Martynenko1, T.A.Nepokupnaya1, Yu.D.Onufriyev1, V.F.Popov3, O.V.Voloshyna1

1Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine
2V.N.Karasin Kharkiv National University, 4 Svobody Sq., 61022, Kharkiv, Ukraine
3National Science Center Kharkiv Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine

Abstract: 

The paper focuses on the study of radiation resistance of composite scintillators containing the grains of Y2SiO5:Ce or Y3Al5O12:Ce. The paper compares the results obtained for composite scintillators when the grains were made in two ways: (i) by grinding the ingots of the above substances those were obtained by solid phase synthesis, and (ii) by grinding the single crystals growing from the melt. The samples were irradiated by 8.3 MeV beam electrons (at the dose rate 1500 Mrad/h). The paper presents the photoluminescence spectra and values of the relative detection efficiency of beta-radiation of the scintillators measured before and after irradiation by accumulated dose D of 30 and 50 Mrad.

Keywords: 
radiation resistance, composite scintillators, solid phase synthesis, yttrium orthosilicate, yttrium garnet.
References: 

1. UA Patent, 111455 (2016).

2. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Problem. Atom.c Sci. Technol., 105, 59 (2016).

3. A.Boyarintsev, B.Grynyov, A.Gektin et al., in: Abstr. 17th Int. Conf. on Calorimetry in Particle Physics (CALOR 2016), EXCO, Daegu, Republic of Korea (2016), p.33.

4. A.Boyarintsev, A.Bobovnikov, A.Gektin et al., in: Abstr. Fifth Int. Conf. Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016), Minsk, Belarus (2016), p.31.

5. A.Boyarintsev, A.Bobovnikov, A.Gektin et al., in: Abstr. Fifth Int. Conf. Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016), Minsk, Belarus (2016), p.33.

6. A.Yu.Boyarintsev, N.Z.Galunov, B.V.Grinev et al., in: Abstr. Fifth Int. Conf. Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016), Minsk, Belarus (2016), p.34.

7. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Nucl. Instrum. Meth. Phys. Res., A 841, 124 (2017). https://doi.org/10.1016/j.nima.2016.10.034

8. N.Z.Galunov, T.E.Gorbacheva, B.V.Grinyov et al., Nucl. Instrum. Meth. Phys. Res., A 866, 104 (2017). https://doi.org/10.1016/j.nima.2017.06.008

9. N.Z.Galunov, Ia.V.Gerasymov, T.E.Gorbacheva et al., Probl. Atom. Sci. Techn., 109, 35 (2017).

10. A.Yu.Boyarintsev, N.Z.Galunov, N.L.Karavaeva et al., Functional Materials, 20, 471 (2013). https://doi.org/10.15407/fm20.04.471

11. M.E.Globus, B.V.Grinyov, Neorganicheskie Scintillyatory. Novye i Tradicionnye Materialy, Akta, Kharkov (2000) [in Russian].

12. E.Auffray, A.Fedorov, M.Korjik et al., IEEE Trans. Nucl. Sci., 61, 495 (2014). https://doi.org/10.1109/TNS.2013.2285249

13. E.Auffray, A.Borisevitch, A.Gektin et al., Nucl. Instrum. Meth., A 783, 117 (2015).

14. M.T.Lucchini, K.Pauwels, K.Blazek et al., IEEE Trans. Nucl. Sci., 63, 586 (2016). https://doi.org/10.1109/TNS.2015.2493347

15. P.Novotny, V.Linhart, J. Instrument., 12, P07022 (2017). https://doi.org/10.1088/1748-0221/12/07/P07021

16. J.B.Birks, The Theory and Practice of Scintillation Counting, Pergamon Press Ltd, London (1967).

Current number: