Funct. Mater. 2018; 25 (1): 067-074.

doi:https://doi.org/10.15407/fm25.01.067

Investigation of structural, textural, optical and photocatalytic properties of Sn/TiO2 nanocomposites

T.A.Khalyavka1, S.V.Camyshan1, L.A.Davydenko2, V.V.Permyakov3, S.N.Shcherbakov4

1Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., 03164 Kyiv, Ukraine
2Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
3Institute of Geological Sciences, National Academy of Sciences of Ukraine, 55-b O.Gonchar Str., 01054 Kyiv, Ukraine
4M.Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshenkivska Str., MSP-1, 01601 Kyiv, Ukraine

Abstract: 

Nanoscale composite materials based on titanium dioxide and tin were obtained. The obtained powders were characterized by XRD, EDS, SEM, TEM, BET and UV-VIS spectroscopy. The XRD spectrum reveals anatase and rutile structure. Increasing the amount of tin in the composites leads to increase of crystallite size, lattice parameters, pore radius and decrease of specific surface area and pore volume. Analysis of nitrogen sorption-desorption isotherms for the synthesized samples showed the presence of a hysteresis loop which is the evidence for mesoporous structure of the powders. Absorption spectra of the nanocomposites showed a bathochromic shift as compared with pure TiO2. It was found that tin additives leads to band gap narrowing of TiO2. Photocatalytic activity of some cationic dyes (Safranin T, Rhodamine C) under UV and visible irradiation in the presence of composites of Sn/TiO2 was investigated. The composite samples were photocatalytically active in destruction of the cationic dyes in water solutions under UV and visible irradiation. It may be connected with the narrowing of band-gap width, participation of tin in inhibition of electron-hole recombination, prolongation of charges lifetime, increasing of efficiency of interfacial charge separation from TiO2 to tin and formation of doping electronic states.

Keywords: 
titanium dioxide, tin, composites, photocatalysis, dyes.
References: 

1. R.M.Mohamed, E.S.Aazam, J. All. Comp, 595, 8 (2014). https://doi.org/10.1016/j.jallcom.2014.01.168

2. L.Kernazhitsky, V.Shymanovska, T.Gavrilko et al., J. Sol. State Chem., 198, 511 (2013). https://doi.org/10.1016/j.jssc.2012.11.015

3. T.A.Khalyavka, E.I.Kapinus, S.V.Kamyshan, Phys. Chem.:An Ind. J., 10, 185 (2015).

4. W.Cha, S.Chin, E.Park et al., Powd. Tech., 258, 352 (2014). https://doi.org/10.1016/j.powtec.2014.03.012

5. D.Nithyadevi, R.T.Rajendrakumar, Adv. Mater. Res., 678, 373 (2013). https://doi.org/10.4028/www.scientific.net/AMR.678.373

6. Y.Zhao, J.Liu, L.Shi et al., Appl. Catal. B: Environ., 100, 68 (2010). https://doi.org/10.1016/j.apcatb.2010.07.013

7. I.Rangel-Vazquez, G.Del Angel, V.Bertin et al., J. All. Comp., 643, 144 (2015). https://doi.org/10.1016/j.jallcom.2014.12.065

8. K.Vinodgopal, P.V.Kamat, Environ. Sci. Technol., 29, 841 (1995). https://doi.org/10.1021/es00003a037

9. O.Carp, C.L.Huisman, A.Reller, Prog. Sol. State Chem., 32, 33 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001

10. T.A.Khalyavka, N.N.Tsyba, S.V.Kamyshan, Zh. Fiz. Khimii, 89, 148 (2015).

11. A.Guinier, Theorie et Technique de la Radiocristallographie. Dunot, Paris (1956).

12. N.Smirnova, Yu.Gnatyuk, A.Eremenko et al., Intern. J. Photoen., 2006, 224 (2006). https://doi.org/10.1155/IJP/2006/85469

13. S.Brunauer, P.H.Emmett, E.Teller, J. Amer. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023

14. E.P.Barret, L.G.Joyner, P.P.Halenda, J. Amer. Chem. Soc., 73, 373 (1951). https://doi.org/10.1021/ja01145a126

15. I.M.Arabatzis, T.Stergiopoulos, M.C.Bernard et al., Appl. Catal. B: Environ., 42, 187 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3

16. L.Andronic, A.Enesca, C.Vladuta et al., Chem. Engin. J., 152, 64 (2009). https://doi.org/10.1016/j.cej.2009.03.031

17. J.P.Xu, S.B.Shi, L.Li et al., J. Phys. Chem. Sol., 70, 511 (2009). https://doi.org/10.1016/j.jpcs.2008.06.113

18. N.Smirnova, V.Vorobets, O.Linnik et al., Surf. Interf. Anal., 42, 1205 (2010). https://doi.org/10.1002/sia.3237

19. T.Hirata, K.Ishioka, M.Kitajima et al., Phys. Rev. B: Condens. Mat., 53, 8442 (1996). https://doi.org/10.1103/PhysRevB.53.8442

20. S.Lowell, J.E.Shields, Powder Surface Area and Porosity, Chapman & Hall, London (1998).

21. K.Sing, D.Everett, R.Haul et al., Pur. Appl. Chem., 57, 603 (1985). https://doi.org/10.1351/pac198557040603

22. F.E.Oropeza, B.Davies, R.G.Palgrave et al., Phys. Chem. Chem. Phys., 13, 7882 (2011). https://doi.org/10.1039/c0cp02639e

23. X.Yu, Ch.Li, H.Tang et al., Comput. Mater. Sci., 49, 430 (2010). https://doi.org/10.1016/j.commatsci.2010.05.034

24. X.Li, R.Xiong, G.Wei, J. Hazard Mater., 164, 587 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.069

25. X.L.Fu, J.L.Long, X.X.Wang et al., Inter. J. Hydr. En., 33, 6484 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.068

26. H.Sung-Suh, J.Choi, H.Hah et al., J. Photochem. Photobiol. A: Chem., 163, 37 (2004). https://doi.org/10.1016/S1010-6030(03)00428-3

27. Z.He, C.Sun, S.Yang et al., J. Hazard Mater., 162, 1477 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.047

.

Current number: