Funct. Mater. 2018; 25 (1): 075-081.

doi:https://doi.org/10.15407/fm25.01.075

Influence of various preparation methods on percolation behavior of systems based on cross-linked polyurethanes and carbon nanotubes

E.A.Lysenkov1, E.V.Lobko2, V.V.Klepko2, I.P.Lysenkova1

1Mykolayiv V.Sukhomlynskiy National University, 24 Nikol′ska Str., 54030 Mykolayiv, Ukraine
2Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkiv Shausse, 02160 Kyiv, Ukraine

Abstract: 

The features of conductivity and percolation behavior of systems based on cross-linked polyurethanes (CPU) and carbon nanotubes (CNT) depending on the preparation methods are studied by methods of impedance spectroscopy and optical microscopy. It is established, that introduction of nanosized laponite in the CPU-CNTs system leads to decrease of the percolation threshold more than three times. The introduction of laponite influences on the size of CNT aggregates, state of their dispersion and spatial distribution homogeneity. The most efficient method of the properties improvement is formation of the CPU-CNTs system under action of direct current (dc) electric field. For the systems, which are formed under the action of dc electric field the percolation threshold decreases more than five times.

Keywords: 
polymer nanocomposites, carbon nanotubes, conductivity, percolation behavior, laponite, direct current electric field.
References: 

1. H.Koerner, W.Liu, M.Alexander, P.Mirau et al., Polymer, 46, 4405 (2005). https://doi.org/10.1016/j.polymer.2005.02.025

2. E.A.Lysenkov, Z.O.Gagolkina, E.V.Lobko et al., Functional Materials, 22, 342 (2015). https://doi.org/10.15407/fm22.03.342

3. S.D.Bergin, Z.Sun, P.Streich et al., J. Phys. Chem. C, 114, 231 (2010). https://doi.org/10.1021/jp908923m

4. E.A.Lysenkov, Y.V.Yakovlev, V.V.Klepko, Ukr. J. Phys., 58, 378 (2013). https://doi.org/10.15407/ujpe58.04.0378

5. N.I.Lebovka, E.A.Lysenkov, A.I.Goncharuk et al., J. Compos. Mater., 45, 2555 (2011). https://doi.org/10.1177/0021998311401107

6. E.A.Lysenkov, N.I.Lebovka, Y.V.Yakovlev et al., Compos. Sci. Technol., 72, 1191 (2012). https://doi.org/10.1016/j.compscitech.2012.04.002

7. S.Pack, T.Kashiwagi, D.Stemp et al., Macromolec., 42, 6698 (2009). https://doi.org/10.1021/ma900966k

8. Q.Mei, J.Wang, Z.Huang, Acta Mater. Compos. Sin., 25, 146 (2008).

9. H.Palza, B.Reznik, M.Wilhelm et al., Macromol. Mater. Eng., 297, 474 (2012). https://doi.org/10.1002/mame.201100249

10. M.Loginov, N.Lebovka, E.Vorobiev, J. Colloid Interface Sci., 365, 127 (2012) https://doi.org/10.1016/j.jcis.2011.09.025

11. L.Lisetski, M.Soskin, N.Lebovka, Physics of Liquid Matter: Modern Problems, Springer Proc. in Physics, ed by L.Bulavin, N.Lebovka, Springer Intern. Publishing, Switzerland (2015).

12. P.V.Kamat, K.G.Thomas, S.Barazzouk et al., J. Am. Chem. Soc., 126, 10757 (2004). https://doi.org/10.1021/ja0479888

13. E.A.Lysenkov, V.V.Klepko, V.M.Golovanets et al., Ukr. J. Phys., 59, 906 (2014). https://doi.org/10.15407/ujpe59.09.0906

14. Y.F.Zhu, C.Ma, W.Zhang et al., J. Appl. Phys., 105, 054319 (2009). https://doi.org/10.1063/1.3080243

15. Technical Condition 113-03-413-89. Isocyanates. The Method of Mass Content of Isocyanate Groups (1989).

16. A.V.Melezhyk, Yu.I.Sementsov, V.V.Yanchenko, Prikl. Khim., 78, 938 (2005).

17. E.Lysenkov, I.Melnyk, L.Bulavin et al., Physics of Liquid Matter: Modern Problems, Springer Proc. in Physics, ed. by L.Bulavin, N.Lebovka, Springer International Publishing, Switzerland (2015).

18. A.Kyritsis, P.Pissis, J.Grammatikakis, J. Polymer Sci.: Part B: Polymer Phys., 33, 1737 (1995). https://doi.org/10.1002/polb.1995.090331205

.

Current number: