Funct. Mater. 2018; 25 (1): 082-087.

doi:https://doi.org/10.15407/fm25.01.082

Size and distribution of palladium nanoparticles electrodeposited on graphite

I.Saldan1,2, A.Girella2, C.Milanese2, E.Fratini3, O.Dobrovetska4, I.Levchuk4, O.Kuntyi4

1Department of Physical and Colloid Chemistry, Ivan Franko National University of Lviv, 6 Kyryla & Mefodia, 79005 Lviv, Ukraine
2Pavia H2Lab, Department of Chemistry & CSGI, University of Pavia, 16 VialeTaramelli, 27100 Pavia, Italy
3Department of Chemistry & CSGI, University of Florence, 3 Via dellaLastruccia, 50019 Sesto Fiorentino, Italy
4Institute of Chemistry, Lviv Polytechnic National University, 12 Bandery, 79013 Lviv, Ukraine

Abstract: 

Morphology and particle size distribution of palladium nanoparticles obtained by pulse electrodeposition on graphite surfaces in dimethylformamide solution containing 0.01 M PdCl2 were examined by field emission scanning electron microscopy. Chemical composition of the deposits was determined by energy dispersive X-ray spectroscopy. It was found that the average size of palladium nanoparticles increased while their density decreased with the number of pulse cycles.

Keywords: 
palladium, pulse electrodeposition, DMF, SEM.
References: 

1. Y.Xiong, H.Cai, B.J.Wileyet et al., J. Am. Chem. Soc., 129, 3665 (2007). https://doi.org/10.1021/ja0688023

2. E.Antolini, Energy Envir. Sci., 2, 915 (2009). https://doi.org/10.1039/b820837a

3. I.Saldan, Yu.Semenyuk, I.Marchuk et al., J. Mater. Sci., 50, 2337 (2015). https://doi.org/10.1007/s10853-014-8802-2

4. K.Lee, O.Savadogo, A.Ishihara et al., J. Electrochem. Soc., 153, A20 (2006). https://doi.org/10.1149/1.2128101

5. R.Ferrando, J.Jellinek, R.Johnston, Chem. Rev., 108, 843 (2008). https://doi.org/10.1021/cr040090g

6. S.Y.Shen, T.S.Zhao, J.B.Xu, Electrochim. Acta, 55, 9179 (2010). https://doi.org/10.1016/j.electacta.2010.09.018

7. Z.Zhang, L.Xin, K.Sun et al., Int. J. Hydrogen Energy,36, 12686 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.141

8. R.Singh, D.Mishra, Anindita, Int. J. Electrochem. Sci.,4, 1638 (2009).

9. T.ChikkaNagaiah, D.Schafer, W.Schuhmann et al., Anal. Chem., 85, 7897 (2013). https://doi.org/10.1021/ac401317y

10. N.Abbasi, P.Shahbazi, A.Kiani, J. Mater. Chem., A 1, 9966 (2013). https://doi.org/10.1039/c3ta10706j

11. L.-S.Jou, J.-K.Chang, T-J.Twhang et al., J. Electrochem. Soc., 156, D193 (2009). https://doi.org/10.1149/1.3106144

12. C.Du, M.Chen, W.Wang et al., Electrochem. Com., 12, 843 (2010). https://doi.org/10.1016/j.elecom.2010.03.046

13. B.Tao, J.Zhang, S.Hui et al., Electrochim. Acta, 55, 5019 (2010). https://doi.org/10.1016/j.electacta.2010.04.013

14. Y.Xiao, G.Yu, J.Yuan et al., Electrochim. Acta, 51, 4218 (2006). https://doi.org/10.1016/j.electacta.2005.12.003

15. V.Pokhmurskii, O.Kuntyi, S.Kornii et al., Protec. Met. Phys. Chem. Surf., 47, 59 (2011). https://doi.org/10.1134/S207020511101014X

16. O.Kuntyi, I.Saldan, Ye.Okhremchuket et al., Iss. Chem. Chem. Techn., 4, 306 (2011).

17. O.Kuntyi, I.Saldan, O.Bilan et al., Mater. Lett., 69, 79 (2012). https://doi.org/10.1016/j.matlet.2011.11.101

18. O.Kuntyi, I.Saldan, O.Dobrovetska et al., Phys.-Chem. Mechan. Mater., 48, 511 (2012).

19. O.Kuntyi, Y.Okhremchuk, O.Bilan et al., Centr. Eur. J. Chem., 11, 514 (2013).

20. L.Sus, Y.Okhremchuk, I.Saldan et al., Mater. Lett., 139, 296 (2015). https://doi.org/10.1016/j.matlet.2014.10.110

21. O.Dobrovetska, O.Kuntyi, I.Saldan et al., Mater. Lett., 158, 317 (2015). https://doi.org/10.1016/j.matlet.2015.06.041

22. E.Fratini, A.Girella, I.Saldan et al., Mater. Lett., 161, 263 (2015) https://doi.org/10.1016/j.matlet.2015.08.117

Current number: