Funct. Mater. 2018; 25 (2): 218-224.

doi:https://doi.org/10.15407/fm25.02.218

Effect of iodine impurity on the absorption spectrum and phase ransitions in CsPbCl3 thin films.

E.N.Kovalenko1, O.N.Yunakova2, N.N.Yunakov2

1Kharkiv National University of Radio Electronics, 14 Nauka Ave., 61166 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

The absorption spectra of thin films of solid solutions CsPb(Cl1-xIx)3 0≤x≤1 were studied. It has been found that at low concentrations x≤0.2, excitonic spectra of a amalgamation type (according to the classification of Onodera-Tojazawa) are formed. The concentration shift of the exciton bands with increasing x at x = 0.3 indicates the formation of the exciton spectrum of a persistence type in the interval 0.3≤x < 1. The iodine impurity leads to an insignificant increase of the phase ransition temperatures in the orthorhombic (Tc3) and cubic (Tc1) phases of CsPbCl3.

Keywords: 
thin films, solid solutions, excitons, phase ransition.
References: 

1. J.Fernandez, M.J.Tello, M.A.Arriandiga, Mat. Res. Bull., 13, 477 (1978). https://doi.org/10.1016/0025-5408(78)90156-3

2. R.Plesko, R.Kind, J.Roose, J. Phys. Soc. Japan, 45, 553 (1978). https://doi.org/10.1143/JPSJ.45.553

3. Y.Fujii, S.Hoshino, Y.Yamada, G.Shirane, Phys. Rev., B9, 4549 (1974). https://doi.org/10.1103/PhysRevB.9.4549

4. S.Hirotsu, J. Phys. Soc. Japan, 31, 552 (1971). https://doi.org/10.1143/JPSJ.31.552

5. A.R.Lim, S.Y.Jeong, Physica, B304, 79 (2001). https://doi.org/10.1016/S0921-4526(01)00485-9

6. O.N.Yunakova, V.K.Miloslavskii, E.N. Kovalenko, V.V.Kovalenko, Low Temp. Phys., 40, 888 (2014). https://doi.org/10.1063/1.4894319

7. K.S. Aleksandrov, A.T. Anistratov, B.V. Beznosikov, N.V. Fedoseeva, Phase Transitions in Crystals of Halide Compounds, 3, Science, Novosibirsk (1981). [in Russian]

8. I.I. Ilyasov, N.I. Chaursky, D.G. Bergasov, A.G. Bergman, J. Inorg. Chem., 12, 2210 (1967).

9. K.Heidrich, H.Kunzel, J.Treusch, Solid State Commun., 25, 887 (1978). https://doi.org/10.1016/0038-1098(78)90294-6

10. H.Ito, H.Onuki, R.Onaka, J. Phys. Soc. Japan, 45, 2043 (1978). https://doi.org/10.1143/JPSJ.45.2043

11. O.N. Yunakova, V.K. Miloslavskii, E.N. Kovalenko, Opt. Spectr., 112, 90 (2012). https://doi.org/10.1134/S0030400X12010249

12. S.Kondo, A.Masaki, T.Saito, H.Asada, Sol. Stat. Com, 124, 211 (2002). https://doi.org/10.1016/S0038-1098(02)00432-5

13. S.Kondo, K.Amaya, T.Saito, J. Phys.:Condens. Matter., 15, 971 (2003). https://doi.org/10.1088/0953-8984/15/6/324

14. C.K.Moller, Nature, 182, 1436 (1958). https://doi.org/10.1038/1821436a0

15. D.M.Trots, S.V.Myagkota, J. Phys. Chem. Sol., 69, 2520 (2008) https://doi.org/10.1016/j.jpcs.2008.05.007

16. O.N. Yunakova, V.K. Miloslavskii, E.N. Kovalenko, Opt. Spectr., 104, 631 (2008). https://doi.org/10.1134/S0030400X08040115

17. Y,Onodera, Y.Toyozawa. J. Phys. Soc. Japan. 24, 341(1968).

18. V.K. Miloslavskii, O.N. Yunakova, E.N. Kovalenko, Opt. Spectr., 102, 459 (2007).

19. V.K. Miloslavskii, O.N. Yunakova, E.N. Kovalenko, Low Temp. Phys., 33, 1136 (2007)

20. V.K. Miloslavskii, O.N. Yunakova, E.N. Kovalenko, Opt. Spectr., 108, 653 (2010)

21. V.K. Miloslavskii, O.N. Yunakova, E.N. Kovalenko, Low Temp. Phys., 36, 418 (2010). https://doi.org/10.1063/1.3410479

22. N.V. Tkach, V.M. Nitsovic, Ya.M. Voronyak, Ukrainian Phys. J., 24, 67 (1979).

23. M.Schreiber, Y.Toyasawa, J. Phys. Soc. Japan, 51, 1528 (1982). https://doi.org/10.1143/JPSJ.51.1528

24. S.Hirotsu, Phys. Lett., A41, 55 (1972). https://doi.org/10.1016/0375-9601(72)90631-7

Current number: