Funct. Mater. 2018; 25 (2): 234-240.

doi:https://doi.org/10.15407/fm25.02.234

Effect of electron irradiation on excess conductivity of single Y1Ba2Cu3O7-δ crystals

N.A.Azarenkov1, V.N.Voevodin1,2, R.V.Vovk1, S.R.Vovk1, G.Ya.Khadzhai1, V.V.Sklyar1

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Institute of Solid State Physics, Materials Science and Technologies, NSC-KIPT, 1 Akademichna St., 61108 Kharkiv, Ukraine

Abstract: 

Effect of electron irradiation on the excess conductivity of YBa2Cu3O7-δ single crystals is investigated. It is shown that irradiation with electrons leads to significant expansion of the temperature interval that excess conductivity exists. The excess conductivity Δσ(T) has been revealed to obey an exponential temperature dependence in he broad temperature range Tf < T < T*. The description of the excess conductivity can be interpreted in terms of the mean-field theory where T* is the mean-field ransition temperature to the pseudogap state and Δ*(T) is satisfactory described within the framework of the BCS-BEC crossover heory. The value of the transverse coherence length ξc(0) increases by a factor of 1.4 and the point of 2D-3D crossover shifts with respect to temperature.

Keywords: 
excess conductivity, electron irradiation, YBaCuO single crystals, crossover.
References: 

1. T.A.Friedmann, J.P.Rice, J.Giapintzakis, D.M.Ginsberg, Phys. Rev. B, 39, 4258 (1989). https://doi.org/10.1103/PhysRevB.39.4258

2. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis, A.Chroneos, Physica B, 436, 88 (2014). https://doi.org/10.1016/j.physb.2013.11.056

3. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Current Appl. Phys., 14, 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002

4. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001). https://doi.org/10.1063/1.1374717

5. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B, 72, 155105 (2005). https://doi.org/10.1103/PhysRevB.72.155105

6. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Solid State Communication, 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008

7. A.L.Solovyov, L.V.Omelchenko, V.B.Stepanov et al., Phys. Rev. B, 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505

8. N.A.Azarenkov, V.N. Voevodin, R.V.Vovk et al., J. Mater. Sci.:Mater. Electr., 28, 15886 (2017). https://doi.org/10.1007/s10854-017-7483-4

9. L.G.Aslamazov, A.I.Larkin, Phys. Lett., 26A, 238 (1968). https://doi.org/10.1016/0375-9601(68)90623-3

10. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Physica B, 493, 58 (2016). https://doi.org/10.1016/j.physb.2016.04.015

11. H.A.Borges, M.A.Continentino, Solid State Commun. 80, 197 (1991). https://doi.org/10.1016/0038-1098(91)90180-4

12. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci: Mater. in Electron., 18, 811 (2007). https://doi.org/10.1007/s10854-006-9086-3

13. L.M.Ferreira, P.Pureur, H.A.Borges, P.Lejay, Phys. Rev. B, 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69.212505

14. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Mod. Phys. Lett. B, 30, 1650188 (2016). https://doi.org/10.1142/S0217984916501888

15. W.E.Lawrence, S.Doniach, in: Proc. of the 12th Intern. Conf. on Low Temperature Physics, Kyoto, Japan, 1970, ed. by E.Kanda (Keigaku, Tokyo, 1970), p.361.

16. J.B.Bieri, K.Maki, R.S.Thompson, Phys. Rev. B, 44, 4709 (1991). https://doi.org/10.1103/PhysRevB.44.4709

17. A.L.Solovjov, M.A.Tkachenko, R.V.Vovk, A.Chroneos, Physica C, 501, 24 (2014). http:dx.doi.org10.1016j.physc.2014.03.004. https://doi.org/10.1016/j.physc.2014.03.004

18. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013). https://doi.org/10.1016/j.physb.2013.04.032

19. R.V.Vovk, Y.I.Boiko, V.V.Bogdanov et al., Physica C, 536, 26 (2013). https://doi.org/10.1016/j.physc.2017.04.001

20. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci: Mater. Electron., 25, 5226 (2014). https://doi.org/10.1007/s10854-014-2292-5

21. W.K.Kwok, S.Fleshler, U.Welp et al., Phys. Rev. Lett. 69, 3370 (1992). https://doi.org/10.1103/PhysRevLett.69.3370

22. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., J. Alloys Compds., 509, 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102

23. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997). https://doi.org/10.1063/1.593511

24. Yu.T.Petrusenko, I.M.Neklyudov, A.N.Sleptsov et al., Physica B, 169, 711 (1991). https://doi.org/10.1016/0921-4526(91)90401-Y

25. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908

26. H.Lutgemeier, S.Schmenn, P.Meuffels et al., Physica C, 267, 191 (1996). https://doi.org/10.1016/0921-4534(96)00380-2

27. R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009). https://doi.org/10.1016/j.physb.2009.05.047

28. Physical Properties High Temperature Superconductors, ed. by D.M.Ginsberg, I.-Singapore: Word Scientific (1989).

29. R.V.Vovk, N.R.Vovk, O.V.Dobrovolskiy et al., J. Low Temp. Phys., 1, 17 (2014). doi 10.1007s10909-014-1121-9.

30. A.V.Bondarenko, A.A.Prodan, Yu.T.Petrusenko et al., Phys. Rev., 64, 092513 (2001) . https://doi.org/10.1103/PhysRevB.64.092513

31. M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko, N.N.Chebotaev, J. Low Temp. Phys., 32, 571 (2006). https://doi.org/10.1063/1.2215373

32. J.M.Valles, Jr., A.E.White, K.T.Short et al., Phys. Rev. B, 39, 11599 (1989). https://doi.org/10.1103/PhysRevB.39.11599

33. T.Siegrist, S.Sunshince, D.W.Murphy et al., PRB, 35, 7137 (1987). https://doi.org/10.1103/PhysRevB.35.7137

34. B.P.Stojkovic, D.Pines, Phys. Rev. B, 55, 8567 (1997).

35. A.L.Solov'ev, H.U.Habermeier, T.Haage, J. Low Temp. Phys., 28, 144 (2002).

36. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 62 (1995). https://doi.org/10.1016/0921-4534(95)00553-6

37. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater. Sci.:Mater. Electr., 23, 1255 (2012). doi 10.1007s10854-011-0582-8.

38. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999). https://doi.org/10.1103/PhysRevB.59.12083

39. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 68, 134508 (2003) https://doi.org/10.1103/PhysRevB.68.134508

40. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt. Phys. Rev. Lett., 91, 235302 (2003). https://doi.org/10.1103/PhysRevLett.91.235302

41. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 054506 (2005). https://doi.org/10.1103/PhysRevB.72.054506

42. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). https://doi.org/10.1103/PhysRevB.69.144524

43. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Current Appl. Phys., 16, 931 (2016). https://doi.org/10.1016/j.cap.2016.05.014

Current number: