Funct. Mater. 2018; 25 (2): 241-245.

doi:https://doi.org/10.15407/fm25.02.241

Electron spin resonance and magnetic phase transitions in manganite perovskite La0.78Sr0.22MnO3 synthesized by the solid-phase reaction method

T.Kalmykova1, A.Vakula1,2, S.Nedukh1,3, S.Tarapov1,2,3, A.Belous4, V.Krivoruchko5, R.Suhov2

1O.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Acad. Proskura Str., 61085 Kharkiv, Ukraine
2Kharkiv National University of Radio Electronics, 14 Nauky Ave., 61166 Kharkiv, Ukraine
3V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
4Institute of General and Inorganic Chemistry, 32/34 Palladina Blvd., 03142 Kyiv, Ukraine
5Donetsk Physics & Technology Institute, National Academy of Sciences of Ukraine, 46 Nauky Ave. 03680 Kyiv, Ukraine

Abstract: 

Magnetic properties of nanopowder of perovskite manganite doped with strontium La0.78Sr0.22MnO3 are studied using electron paramagnetic resonance method. Analysis of the experiments in the temperature range T = 77-290 K shows that this structure is a typical nanostructure only at T < 100 K. In the remaining temperature region, the structure is in the superparamagnetic and noncollinear superparamagnetic magnetic state.

Keywords: 
electron spin resonance, magnetic nanopowder, superparamagnetic state.
References: 

1. L.P.Gorkov, Uspehi Fiz. Nauk, 168, 665 (1998). https://doi.org/10.3367/UFNr.0168.199806g.0665

2. T.V.Kalmykova, S.V.Nedukh, S.Yu.Polevoy et al., Low Temper. Phys., 41, 273 (2015). https://doi.org/10.1063/1.4918758

3. D.P.Belozorov, A.A.Girich, S.I.Tarapov et al., AIP Advances, 4, 037116 (2014). https://doi.org/10.1063/1.4869310

4. M.K.Khodzitsky, T.V.Kalmykova, S.I.Tarapov et al., Appl. Phys. Lett., 95, 082903 (2009). https://doi.org/10.1063/1.3204004

5. S.I.Tarapov, D.P.Belozorov, Low Temper. Phys., 38, 766 (2012). https://doi.org/10.1063/1.4733684

6. D.P.Belozorov, S.I.Tarapov, A.M.Pogorily et al., Appl. Phys. Lett., 100, 171104 (2012). https://doi.org/10.1063/1.4705729

7. A.I.Tovstolytkin, A.M.Pogorily, D.I.Podyalovskii et al., J. Appl. Phys., 102, 063902 (2007). https://doi.org/10.1063/1.2778738

8. A.G.Belous, O.I.V'yunov, E.V.Pashkova et al., Neorg. Mater., 39, 212 (2003).

9. A.A.Girich, M.A.Miliaiev, S.V.Nedukh et al., Telecommun. Radio Engin., 73, 749 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i8.80

10. T.V.Kalmykova, S.I.Tarapov, S.V.Nedukh et al., Functional Materials, 19, 14 (2012).

11. A.Moskaltsova, M.P.Proenca, S.V.Nedukh et al., J. Magn. Magn. Mater., 374, 663 (2015). https://doi.org/10.1016/j.jmmm.2014.09.036

12. A.G.Anders, A.S.Vakula, S.I.Tarapov et al., Telecommun. Radio Engin., 75, 1849 (2016). https://doi.org/10.1615/TelecomRadEng.v75.i20.50

13. C.Haase, U.Nowak, Phys. Rev. B, 85, 045435 (2012). https://doi.org/10.1103/PhysRevB.85.045435

14. S.V.Vonsovskii, Magnetism, Science, Moscow 1032 (1971).

15. V.N.Krivoruchko, A.I.Marchenko, A.A.Prokhorov, Low Temp. Phys., 33, 433 (2007). https://doi.org/10.1063/1.2737553

16. A.I.Marchenko, V.N.Krivoruchko, Low Temp. Phys., 38, 157 (2012). https://doi.org/10.1063/1.3684279

17. V.N.Krivoruchko, A.I.Marchenko, J. Magn. Magn. Mater., 324, 3087 (2012). https://doi.org/10.1016/j.jmmm.2012.05.007

18. R.Berger, J.Kliava, J.-C.Bissey et al., J. Appl. Phys., 87, 7389 (2000). https://doi.org/10.1063/1.372998

19. M.T.Causa, M.Tovar, A.Caneiro et al., Phys. Rev. B, 58, 3233 (1997). https://doi.org/10.1103/PhysRevB.58.3233

Current number: