Funct. Mater. 2018; 25 (2): 308-312.

doi:https://doi.org/10.15407/fm25.02.308

Thermodynamic properties of fatty acid esters in some biodiesel fuels

A.M.Levterov1, A.A.Levterov2

1A.Podgorny Institute for mechanical engineering problems, 2/10 Pozharsky St., 61046 Kharkiv, Ukraine
2National University of civil protection of Ukraine, 94 Chernyshevska St., 61023 Kharkiv, Ukraine

Abstract: 

The thermophysical properties of biodiesel fuel in the high-temperature gas phase are studied for thermodynamic calculations of the working processes of piston engines. In the article the method for obtaining approximate analytical expressions of thermodynamic functions has been offered. The review of published experimental and design data enabled forming a set of thermodynamic and thermochemical properties of twenty-two complex methyl and ethyl chemically bonded esters of eleven higher fatty acids in biodiesel fuels. Next, the problem of polynomial approximation of thermodynamic functions has been solved. The coefficients of the approximating polynomials of the thermodynamic properties of esters in the gas phase have been tabulated.

Keywords: 
biodiesel fuel, fatty acid esters, burn process, properties, approximation, modeling.
References: 

1. Technology Roadmap: Biofuels for Transport, (IEA), France (2011).

2. A.S.Kutsenko, Computer Modeling of Burn Processes in Internal Combustion Engines, Naukova Dumka, Kyiv (1988) [in Ukraine].

3. A.M.Levterov, L.I.Levterova, Visnyk NTU KhPI, 5, 141 (2013).

4. V.Ye.Alemasov, A.F.Dregalin, Thermodynamic and Thermophysical Properties of Combustion Products, Nauka, Moscow (1971) [in Russian].

5. L.V.Gurvich et al., Thermodynamic Properties of Separate Substances, in 4 vol., Nauka, Moscow (1978-1982) [in Russian].

6. A.A.Ravdel', K.P.Mishchenko, Concise Handbook of Physical and Chemical Substances, Khimia, Leningrad (1974) [in Russian].

7. JANAF Thermochemical Tables, 2nd ed., U.S. National Bureau (1971).

8. S.Chuepeng, C.Komintarachat, J.Kasetsart, Nat. Sci., 44, 308 (2010).

9. I.G.Valeri, J.Yang, Biotechn.y Adv., 27, 641 (2009). https://doi.org/10.1016/j.biotechadv.2009.04.024

10. W.Yuan, A.Hansen, Q.Zhang, Fuel, 88, 1120 (2009). https://doi.org/10.1016/j.fuel.2008.11.011

11. A.K.Agarwal, Progr. Energy and Combust. Sci., 33, 233 (2007). https://doi.org/10.1016/j.pecs.2006.08.003

12. H.V.Lee, R.Yunus, J.C.Juan, Fuel Proc. Techn., 92, 2420 (2011). https://doi.org/10.1016/j.fuproc.2011.08.018

13. S.P.Verevkin, Ind. Eng. Chem. Res., 48, 7388 (2009). https://doi.org/10.1021/ie900308u

14. P.Larissa, R.Ceriani, R.Guirardello, Chem. Engin. Trans., 32, 535 (2013).

15. G.Toscano, D.Duca, J. Agricult. Engin., 40, 47 (2009). https://doi.org/10.4081/jae.2009.90

16. S.Glisic, D.Skala, 9th Intern. Symp. Supercritical Fluids, France (2009, May), ISBN 978-2-9511591-7-4.

17. D.Borghi, C.Abreu, R.Guirardello, 3rd Intern. Conf. Engin. Optim., Rio de Janeiro, Brazil (2012), code paper 516.

18. A.Osmont, L.Catoire, I.Gokalp, Intern. J. Chem.l Kinet., 39, 481 (2007). https://doi.org/10.1002/kin.20264

19. A.Osmont, L.Catoire, I.Gokalp, 3rd Europ. Combustion Meeting ECM, Greece (2007), p.1.

20. E.Giakoumis, Renewable Energy, 50, 858 (2013). https://doi.org/10.1016/j.renene.2012.07.040

Current number: