Funct. Mater. 2018; 25 (2): 319-328.

doi:https://doi.org/10.15407/fm25.02.319

Thermodynamic and adhesive parameters of nanolayers in the system metal-dielectric

V. M. Yuzevych1, B. P. Koman2, R. M. Dzhala1

1 G. Karpenko Physicomechanical Institute National Academy of Sciences of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine
2 I.Franko Lviv National University, faculty of electronics and computer echnologies, Dragomanova Str., 50, 79005 Lviv, Ukraine,

Abstract: 

Evaluation technique of thermodynamic and adhesive parameters of interphase nanolayers in metal - insulator was developed by use of macroscopic methods of surface physics and thermodynamics methods of nonequilibrium processes. Typical parameters of interfacial interactions (interfacial energy, tension, density of electric charges, specific electrocapacity, electrical components of interfacial energy) for metals (Ag, Au, Cu, Fe) at Al2O3 interphase were calculated. It was found that increment of dielectric layer (Al2O3) surface tension which is accompanied with increasing of interfacial tensions and energies, electric component of the surface energy, specific surface charge of double electric layer and contact potential difference. The developed echnique can be used for evaluation of interfacial energy parameters of interaction between another physical nature composited pairs with aking into account the nature of the double electrical layer.

Keywords: 
dielectric, metal, double electric layer, energy of adhesive bonds, surface energy, hardness, electric capacity.
References: 

1. V. Sozajev, Techn., Phys. Lett., 31, 27, 2005

2. E. Burello, A. P. Worth, Nanotoxicol., 5, 228, 2011. https://doi.org/10.3109/17435390.2010.502980

3. D. W. Stollberg; J. M. Hampikian, L. Riester, et al, Mater. Scie. Eng. A,, 359, 112, 2003. https://doi.org/10.1016/S0921-5093(03)00339-3

4. S. S. Teske, C. S. Detweiler, Int. J. Environ. Res. Public Health, 12, 1112, 2015. https://doi.org/10.3390/ijerph120201112

5. B.Missol, The surface energy of the phase separation in metals. -M .: Metallurgy, 1978.

6. N. C. Lang, W. Kohn, Phys. Rev. B, 1, 3555 1970. https://doi.org/10.1103/PhysRevB.1.3555

7. M. B. Partenskii, Sov. Phys. Usp. 22, 330,1979. https://doi.org/10.1070/PU1979v022n05ABEH005498

8. V. N. Yuzevich, B. P. Koman, Fiz. Tverd. Tela, 56, 895, 2014.

9. A. S. Peterson, Condensed Matter Physics Commons. Retrospective Theses and Dissertations. Paper 6938. Ames, Iowa, U.S., 1981.

10. B. P. Koman, V. N. Yuzevich, Fiz. Tverd. Tela, 54, 1335, 2012.

11. V. N. Yuzevich, B. P. Koman, Fiz. Tverd. Tela, 56, 895, 2014].

12. Stojek Z. The Electrical Double Layer and its Structure. Chapter I.1., Electroanalytical Methods Guide to Experiments and Applications, Ed F. Scholz. 2005. XII, p 1-8. https://doi.org/10.1007/978-3-662-04757-6_1

13. Herring C, Surface Tension as a Motivation for Sintering, in Phys. Powder Metal., ed. W.E. Kingston, McGraw-Hill, New York, 1951, p. 143.

14. R. Shuttleworth, Proc. Phys. Soc., A, 63, 444 1950. https://doi.org/10.1088/0370-1298/63/5/302

15. R. C. Cammarata, Progr. Surf. Sci., 46, 1, 1994. https://doi.org/10.1016/0079-6816(94)90005-1

16. B. P. Koman, V.M. Yuzevich, J. Nano- Electron. Phys., 7, 04059, 2015.

17. Timoshenko S. P., Goodier J. N. Theory of Elasticity. New York-Toronto-London: McGraw-Hill Book Company, 1951, 519 p.

18. L. Dorfmann. Modeling Nonlinear Electroelastic Materials / Mechanics and Electrodynamics of Magneto- and Electroelastic Materials. Editors: R. W. Ogden, D. J. Steigmann, Publisher: Springer, 527, 57, 2011.

19. P. Soprunjuk, V.M. Yuzevych. The diagnostic of materials and environments. Energy characteristics of the surface layers., Lviv, PMI them. Karpenko NAS of Ukraine, SPOL. p. 292, 2005

20. S. R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam, 1962.

21. Maugin G. A. Electromagnetics in Deformable Solids / Mechanics and Electrodynamics of Magneto- and Electroelastic Materials. Ed. R. W. Ogden, D. J. Steigmann, Publisher: Springer. 527, 57, 2011.

22. A. I. Rusanov Surface thermodynamics revisited / Surface Science Reports. Elsevier. Editor-in-Chief: Charles T. Campbell., 58, 111, 2005.

23. Banasiak J., Lachowicz M. Methods of Small Parameter in Mathematical Biology. Modeling and Simulation in Science, Engineering and Technology. Springer, Birkhuser, p. 272, 2014. https://doi.org/10.1007/978-3-319-05140-6

24. Karlint S. and McGregor J. Application of Method of Small Parameters o Multi-Niche Population Genetic Models (Stanford University) , Theoretical population in biology. 3, 186, 1972. https://doi.org/10.1016/0040-5809(72)90026-3

25. Solid State Surface Science, Vol. 1, edited by M. Green, Marcel Dekker, New York, NY, USA, 1969.

26. N. Eustathopoulus, Joud J.-C. Current Topics Mater. Sci., 4, 281, 1980.

27. R. G. Linford, Solid State Surface Sci., 2, 1, 1973.

28. J. R. Smith, Phys. Rev., 181, 522, 1969. https://doi.org/10.1103/PhysRev.181.522

29. Martinsen O. G., Grimnes S., Schwan H. P., Encyclopedia of Surface and Colloid Science. New York. Ed. by M. Dekker, P. 2643, 2002

30. A. W. Adamson, A. P. Gast, Physical Chemistry of Surfaces / 6th Edition. Department of Chemistry, University of Southern California Los Angeles, California. 1997. A Wiley-Interscience Publication, John Wiley and Sons, Inc. New York, Singapore, Toronto.

31. Charles Kittel. Introduction to Solid State Physics, 8th Ed., 2004.

32. M. Alden, S. Mirbt, H. L. Skriver, Phys. Rev. B, 46, 6303,1992. https://doi.org/10.1103/PhysRevB.46.6303

33. S. K. Rhee S. K. J. Amer. Ceram. Soc. 55, 300 1972. https://doi.org/10.1111/j.1151-2916.1972.tb11289.x

34. V.D. Kuznetsov. The surface energy of solids. - M.: Hostehyzdat, 1954. - 220 p. (in Russian)

35. R. V. Armstrong, Materials, 4, 1287, 2011. https://doi.org/10.3390/ma4071287

Current number: