Funct. Mater. 2018; 25 (3): 432-438.

doi:https://doi.org/10.15407/fm25.03.432

Effects of different concentrations of sodium ions on the self-assembly of amphotericin B and DPPC at the air-water interface

Juan Wang1, Tuo Li1, Yahong Ma2,3, Zongcheng Miao4

1 Shaanxi Engineering Research Center of Controllable Neutron Source, Xijing University, Xi'an, 710123, China
2 School of Electronic Information Engineering Internet of Things and Big Data Research center, Xijing University, Xi'an, 710123, China
3 The Fourth Military Medical University, Xi'an, 710032,China
4 Department of Science, Xijing University, Xi'an, 710123, China

Abstract: 

Amphotericin B is a widely used polyene antifungal drug for the treatment of deep fungal infections. This drug could cause pores on the cell membrane. In this work, we used the dipalmitoylphosphatidylcholine monolayer as the model of cell membrane in half. The influence of Na+ions on the interaction between amphotericin B and biomembrane were studied by analysis of phase transition and thermodynamic properties of monolayers. The Na+ions may affect the molecular orientation of amphotericin B, and it depends on the concentration of sodium ions. Low concentration of Na+ ions has an opposite effect to high concentration of that. The results are helpful for obtaining some information on the influence mechanism in the level of sodium ions on the interaction between amphotericin B and biomembrane in the angle of physics.

Keywords: 
Na+ ions, amphotericin B, phase transition, intermolecular interaction
References: 

1. Dynarowicz-Latka P, Minoes Jr. J, Conde O, et al., Appl. Surf. Scien., 246, 334, 2005. https://doi.org/10.1016/j.apsusc.2004.11.037

2. Ganrrignes J C, Ricco-Lattes I, Perez E, et al. Langmuir, 14, 5968, 1998. https://doi.org/10.1021/la980460u

3. Ermishkin L N, Kasumov K M, Potzeluyev, Nature, 262, 698, 1976. https://doi.org/10.1038/262698a0

4. Andreoli T E. Annals New York Acad Scien, 235, 448, 1974. https://doi.org/10.1111/j.1749-6632.1974.tb43283.x

5. Katsu T, Okada S, Imamura T, et al., Anal. Scien, 24, 1551, 2008 . https://doi.org/10.2116/analsci.24.1551

6. Gagos M, Arczewska M., J Phys Chem B, 115, 3185, 2011. https://doi.org/10.1021/jp110543g

7. Becucci L, Innocenti M, Bellandi S, et al., Electrochim Acta, 112, 719, 2013. https://doi.org/10.1016/j.electacta.2013.09.027

8. Turcu R, Patterson M J, Omar S., Pediatric Nephrology, 24, 497, 2009. https://doi.org/10.1007/s00467-008-1050-4

9. Zakanda F N, Laurent P, Paquot M, et al. Thin Solid Films, 520, 344, 2011. https://doi.org/10.1016/j.tsf.2011.07.005

10. Wang J, Sun R G, Hao C C., Scien China Chem, 57, 1538, 2014. https://doi.org/10.1007/s11426-014-5124-9

11. Nakahara H, Nakamura S, Okahashi Y, et al., Colloids Surfaces B- Biointerfaces, 102, 472, 2013. https://doi.org/10.1016/j.colsurfb.2012.08.031

12. Gzyl-Malcher B, Handzlik J, Klekowska E. Bioelectrochem, 87, 96, 2012. https://doi.org/10.1016/j.bioelechem.2011.12.005

13. Wang J, Shi R X, Sun R G, et al. Chin Phys B, 25, 090505, 2016. https://doi.org/10.1088/1674-1056/25/9/090505

14. Panda A K, Wojciechowski P, Nag S, et al. J Display Techn, 30, 1255, 2009. https://doi.org/10.1080/01932690902735124

15. Wang J, Sun R G, Hao C C, et al., Chem Research Chine Univ, 33, 447, 2017. https://doi.org/10.1007/s40242-017-6303-y

Current number: