Funct. Mater. 2018; 25 (3): 445-449.

doi:https://doi.org/10.15407/fm25.03.445

Obtaining and characterization of stilbene polycrystals for detection of charged particles

V.Tarasov1, L. Andryushchenko2, I.Vlasova1, V.Shlyakhturov1, O.Shpilinskaya3, L.Trefilova2, E.Rybka2

1Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2National University of Civil Defence of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine
3National Aerospace University Kharkiv Aviation Institute, 17 Chkalova Str., 61070 Kharkiv, Ukraine

Abstract: 

Stilbene polycrystals with improved energy resolution were obtained by technique of hot vacuum pressing of plate-shape crystallites grown by crystallization from saturated solution of stilbene powder in dichloro-ethane. Transparency and scintillation parameters of the stilbene polycrystals were found to depend on the duration of keeping the initial material under vacuum before pressing. In comparison with 8.2 % energy resolution of the stilbene single crystal, the stilbene polycrystal has 8.8 % energy resolution under 624 keV electrons, whereas under 5.5 MeV α-particles, both the stilbene poly- and single crystals have 11.9 % energy resolution.

Keywords: 
stilbene, polycrystal, scintillator, energy resolution, vacuum pressing.
References: 

1. J.B.Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, London (1967).

2. N.Z.Galunov, V.P.Seminozhenko, Radioluminescence of Organic Condensed Media. Theory and Application, Naukova Dumka, Kiev (2015) [in Russian].

3. V.A.Tarasov, L.A.Andryushchenko, Dudnik, E.A.Rybka, Functional Materials, 25, 144 (2018). https://doi.org/10.15407/fm25.01.144

4. J.H.Baker, S.V.Budakovsky, N.Z.Galunov et al., J.Luminescence, 102-103, 464 (2003). https://doi.org/10.1016/S0022-2313(02)00579-3

5. N.Z.Galunov, O.A.Tarasenko, V.A.Tarasov, Functional Materials, 22, 61 (2015). https://doi.org/10.15407/fm22.01.061

6. L.A.Andryushchenko, S.V.Budakovskii, N.Z.Galunov et al., Instrum. Exp. Tech., 46, 591 (2003). https://doi.org/10.1023/A:1026012931983

7. L.A.Andryushchenko, S.V.Budakovskii, N.Z.Galunov et al., Instrum. Exp. Tech., 42, 759 (1999).

8. T.E.Gorbacheva, A.M.Lebedinskiy, I.V.Lazarev et al., J. Opt. Techn., 79, 674 (2012). https://doi.org/10.1364/JOT.79.000674

9. U.A. Patent 55,633 (2003)

10. L.A.Andryushenko, L.I.Voloshina, I.D.Vlasova et al., Instrum. Exp. Tech., 55, 179 (2012). https://doi.org/10.1134/S0020441212010137

11. A.Buzykaev, C.Cherepanov, A.Danilyuk et al., Instrum. Exp. Tech., A 379, 453 (1990).

12. Nanoprom. Superfinishnay Obrobka Nemetallicheskith Detalej. http://www.nanoprom.pro.

Current number: