Funct. Mater. 2018; 25 (3): 471-476.

doi:https://doi.org/10.15407/fm25.03.471

Interaction of HNO3-HI-citric acid aqueous solutions with CdTe, Zn0.04Cd0.96Te, Zn0.1Cd0.9Te and Cd0.2Hg0.8Te semiconductors

Ye.Ye.Hvozdiyevskyi1, R.O.Denysyuk1, V.M.Tomashyk2, G.P.Malanych2, Z.F.Tomashyk2

1I.Franko Zhytomyr State University, 40 Velyka Berdychivska Str., 10008 Zhytomyr, Ukraine
2V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine

Abstract: 

The chemical dissolution of CdTe single crystals and Zn0.04Cd0.96Te, Zn0.1Cd0.9Te, Cd0.2Hg0.8Te solid solutions in HNO3-HI-citric acid aqueous solutions has been investigated. The etching rate dependences of the mentioned above materials versus iodine and organic solvent content in the compositions of the chemical dissolution have been determined. The projections of constant etch rate surfaces (the Gibbs diagrams) have been constructed, the kinetic features of the dissolution has been shown and rate-limiting steps of the dissolution process and locate composition regions of polishing solutions have been identified. Using the experimental data, the compositions of polishing solutions and the conditions of the chemical-dynamic polishing of the CdTe, Zn0.04Cd0.96Te, Zn0.1Cd0.9Te and Cd0.2Hg0.8Te surfaces have been optimized.

Keywords: 
semiconductor, single crystal, solid solutions, etchant, surface, chemical etching, polishing, kinetics.
References: 

1. Ye.O.Bilevych, V.M.Tomashik, Z.F.Tomashik, S.G.Danylenko, Phys. and Chem. of Solid State, 1, 267 (2000).

2. Z.F.Tomashik, O.R.Gumenyuk, V.N.Tomashik, P.I.Feychuk, Kondens. Sredy i Mezhfaz. Granitsy, 5, 248 (2003).

3. V.N.Tomashik, Z.F.Tomashik. in: CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications. P.II. ed. by R.Triboulet and P.Siffert, Netherlands (2010).

4. R.R. Singh, D. Kaushik, M. Sharma, D.K. Gupta, R.K. Pandey. Semicond. Sci. Technol, 23, 015016 (2008). https://doi.org/10.1088/0268-1242/23/1/015016

5. L. Qiang, J. Wanqi., Semicond. Sci. Technol., 21, 72, (2006). https://doi.org/10.1088/0268-1242/21/1/013

6. A. Hossain, A.E. Bolotnikov, G.S. Camarda, et al., J. Electron. Mater., 43, 2771, (2014). https://doi.org/10.1007/s11664-013-2698-5

7. R.O.Denysyuk, V.M.Tomashik, E.E.Hvozdiyevskyi, Vopr. Khim. Khim. Tekhnol., 2, 51 (2016).

8. Z.F.Tomashik, Ye.O.Bilevych, V.N.Tomashik, Kondens. Sredy i Mezhfaz. Granitsy, 3, 237 (2001).

9. Z.F. Tomashik, Ye.O. Bilevych, V.N. Tomashik, Kondens. Sredy i Mezhfaz. Granitsy, 3, 237 (2001).

6. E.E.Hvozdiyevskyi, R.O.Denysyuk, V.M.Tomashik et al., Nauk. Visn. Chernivtsi Nats. Univ. Khim., 658, 136 (2013).

7. V.A.Perevoshchikov, Vysokochistye Veshchestva, 2, 5 (1995).

11. S.S. Pop, I.S. Sharodi, Physical Electronics, Lviv, Yevrosvit (2001) [in Ukrainian]

.

Current number: