Funct. Mater. 2018; 25 (3): 505-515.

doi:https://doi.org/10.15407/fm25.03.505

Application of carbon as a barrier layer in Sc/Si multilayer X-ray mirrors

Yu.P.Pershyn, I.Yu.Devizenko, V.S.Chumak, A.Yu.Devizenko, V.V.Kondratenko

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychov Str., 61002 Kharkiv, Ukraine

Abstract: 

X-ray reflectometry in the hard X-ray region (λ = 0.154 nm) was used to investigate the barrier properties of carbon layers 0.2-1.3 nm thick in Sc/Si multilayer X-ray mirrors (MXMs) deposited by DC magnetron sputtering. Precise measurement of the MXM period makes it possible to record volumetric changes in the Sc/C/Si MXM with an accuracy better than 0.01 nm, thus the interaction of the carbon layers with the material of the matrix layers was revealed. The formation of carbide (Si-on-Sc interface) and carbide-silicide (Sc-on-Si nterface) layers was found. The reflectivity of the Sc/C/Si mirrors at the wavelength of ~ 46.9 nm was estimated.

Keywords: 
multilayer X-ray mirror, carbon barrier layer, layer interaction, EUV region, reflectivity.
References: 

1. Yu.A.Uspenskii, V.E.Levashov, A.V.Vinogradov et al., Opt. Lett., 23, 771 (1998). https://doi.org/10.1364/OL.23.000771

2. S.Bajt, J.B.Alameda, W.M.Clift et al., Opt. Eng., 41, 1797 (2002). https://doi.org/10.1117/1.1489426

3. S.Braun, H.Mai, M.Moss et al., Jpn. J. Appl. Phys., 41, 4074 (2002). https://doi.org/10.1143/JJAP.41.4074

4. S.Yulin, F.Schafers, T.Feigl et al., Proc. SPIE, 5193, 155 (2004). https://doi.org/10.1117/12.505582

5. J.Gautier, F.Delmotte, M.Roulliay et al., Proc. SPIE, 5963, 56930X (2005). https://doi.org/10.1117/12.625030

6. C.D,Macchietto, B.R.Benware, J.J.Rocca, Opt. Lett., 24, 1115 (1999)

7. A.V.Vinogradov, J.J.Rocca, Quant. Electron., 33, 7 (2003). https://doi.org/10.1070/QE2003v033n01ABEH002358

8. H.Takenaka, T.Kawamura, J. Electron. Spectrosc. Relat. Phenom., 80, 381 (1996). https://doi.org/10.1016/0368-2048(96)02997-0

9. M.Moss, T.Bottger, S.Braun et al., Thin Solid Films, 468, 322 (2004). https://doi.org/10.1016/j.tsf.2004.06.095

10. A.V.Penkov, E.N.Zubarev, O.V.Poltseva et al., PAST, No. 4, 157 (2006).

11. A.Kubec, J.Maser, P.Formanek et al., Appl. Phys. Lett. 110, 111905 (2017). https://doi.org/10.1063/1.4978610

12. D.L.Windt, Comput. Phys., No. 4, 360 (1998).

13. Yu.A.Uspenskii, J.F.Seely, N.L.Popov et al., J. Opt. Soc. Am. A, 21, 298 (2004). https://doi.org/10.1364/JOSAA.21.000298

14. M.Fernandez-Perea, J.I.Larruquert, J.A.Aznarez et al., J. Opt. Soc. Am. A, 23, 2880 (2006). https://doi.org/10.1364/JOSAA.23.002880

15. Y.P.Pershyn, E.N.Zubarev, D.L.Voronov et al., J. Phys. D: Appl. Phys., 42, 125407 (2009). https://doi.org/10.1088/0022-3727/42/12/125407

16. D.L.Windt, S.Donguy, J.Seely et al., Appl. Opt., 43, 1835 (2004). https://doi.org/10.1364/AO.43.001835

17. Specular X-ray Optics, ed. by A.V.Vinogradov, Mashinostroenie, Leningrad (1989) [in Russian].

18. R.Pottgen, W.Jeitschko, Inorg. Chem., 30, 427 (1991). https://doi.org/10.1021/ic00003a013

Current number: