Funct. Mater. 2018; 25 (3): 534-538.

doi:https://doi.org/10.15407/fm25.03.534

Formation of monolayer ensembles of branched gold nanoparticles

T.G.Beynik1, N.A.Matveevskaya1, D.Yu.Kosyanov2, A.A.Vornovskikh2, V.G.Kuryavyi3, S.V.Dukarov4, S.I.Petrushenko4

1State Scientific Institution Institute for Single Crystals, Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Far Eastern Federal University, 8 Sukhanova Str., 690950 Vladivostok, Russia
3Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 100-let Vladivostoka Ave., 690022 Vladivostok, Russia
4V.Karazin Kharkiv University, 4 Svobody Sq, Kharkiv, 61022, Ukraine

Abstract: 

Monolayer film structures based on branched gold nanoparticles (Au NPs) with (80±20) nm average NPs size were synthesized using template synthesis on functionalized glass substrates. The obtained materials have a high distribution uniformity of isolated Au NPs in a monolayer. The study of the surface profile of monolayer ensembles showed that NPs have a three-dimensional shape, the average roughness of the films surface is 20-30 nm, which corresponds to the length of the sharp NP branches (25±5 nm). The optical properties of Au NPs monolayer ensembles were studied.

Keywords: 
branched gold nanoparticle, monolayer, film, optical properties.
References: 

1. Q.Cuia, B.Xia, S.Mitzscherling et al., Colloids Surf. A, 465, 20 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.028

2. Ndokoye, X.Li, Q.Zhao et al., J. Colloid Interface Sci., 462, 341 (2016). https://doi.org/10.1016/j.jcis.2015.10.007

3. L.Chen, J.Lv, A.Wang et al., Sens. Actuator B, 222, 937 (2016). https://doi.org/10.1016/j.snb.2015.09.010

4. M.Fan, G.F.S.Andrade, A.G.Brolo, Anal. Chim. Acta, 693, 7 (2011). https://doi.org/10.1016/j.aca.2011.03.002

5. L.A.Dykman, V.A.Bogatyrev, Russ. Chem. Rev., 76, 181 (2007). https://doi.org/10.1070/RC2007v076n02ABEH003673

6. S.Fang, C.Hsu, T.Hsu et al., J. Electroanal. Chem., 741, 127 (2015). https://doi.org/10.1016/j.jelechem.2015.01.028

7. T.G.Beynik, N.A.Matveevskaya, M.V.Dobrotvorskaya et al., Nanosistemi, Nanomateriali, Nanotehnologii, 15, 417 (2017).

8. C.K.Klutse, A.Mayer, J.Wittkamper, B.M.Cullum, J. Nanotechnology, 2012, 319038 (2012). https://doi.org/10.1155/2012/319038

9. V.O.Yukhymchuk, O.M.Hreshchuk, M.Ya.Valakh et al., Semiconductor Physics, Quantum Electronics & Optoelectronics, 20, 41 (2017). https://doi.org/10.15407/spqeo20.01.041

10. J.J.Richardson, M.Bjornmalm, F.Caruso, Science, 348, 411 (2015). https://doi.org/10.1126/science.aaa2491

11. N.A.Matveevskaya, Yu.V.Ermolaeva, Yu.I.Pazyura et al., Nanosystemy, Nanomaterialy, Nanotehnologii, 7, 517 (2009).

12. S.C.Street, A.Rar, N.Zhou et al., Chem. Mater., 13, 3669 (2001). https://doi.org/10.1021/cm000981e

13. L.Cheng, J.Huang, H.M.Chen et al., J. Mater. Chem., 22, 2244 (2012). https://doi.org/10.1039/C1JM13937A

14. E.S.Kooij, W.Ahmed, C.Hellenthal et al., Colloid Surf. A, 413, 231 (2012). https://doi.org/10.1016/j.colsurfa.2012.01.041

15. S.A.Canonico-May, K.R.Beavers, M.J.Melvin, J. Colloid Interface Sci., 463, 229 (2016). https://doi.org/10.1016/j.jcis.2015.10.053

16. M.Grzelczak, J.Perez-Juste, P.Mulvaney, L.M.Liz-Marzan, Chem. Soc. Rev., 37, 1783 (2008). https://doi.org/10.1039/b711490g

17. T.I.Borodinova, V.G.Kravets, V.R.Romanyuk, J. Nano-Electron. Phys., 4, 02039 (2012).

18. Plasmonics: Fundamental and Applications, ed. by S.A.Mayer, Springer Science + Business Media LLC (2007).

19. H.Yuan, C.G.Khoury, H.Hwang et al., Nanotechnology, 23, 075102 (2012). https://doi.org/10.1088/0957-4484/23/7/075102

Current number: