Funct. Mater. 2018; 25 (3): 546-553.

doi:https://doi.org/10.15407/fm25.03.546

Hybrid organo-inorganic composite materials of incorporative type based on calcium phosphates for bone surgery

S.P.Krivileva1, O.M.Rassokha1, O.Yu.Zakovorotnyi1, M.G.Zinchenko1, N.O.Bukatenko1, V.I.Zhukov2

1National Technical University Kharkiv Polytechnic Institute, 2 Kyrpichova Str., 61000 Kharkiv, Ukraine
2Kharkiv National Medical University, 4 Nauky Ave., 61000 Kharkiv, Ukraine

Abstract: 

Proposed is a concept for the obtaining of a hybrid organo-inorganic composite material of incorporative type with a binder based on sevilen and an inorganic filler based on nanoparticles of Ca3(PO4)2 nanoparticles. The binder simultaneously contains two different phases: α- and β-modifications of Ca3(PO4)2 separated by a coherent boundary. It is shown that during the formation of the composite several processes occur simultaneously. They are: partial hydration of α-Ca3(PO4)2, partial hydrolysis of sevilen, as well as intermolecular structuring due to the formation of chelate complexes. Studied is the effect of the composition, structure, the ratio of initial components on the properties of the composite.

Keywords: 
hybrid organo-inorganic composite, coherent boundary, incorporative type, structuring mechanism, chelate complex.
References: 

1. L.L.Hench, Science, 295, 5 (2002). https://doi.org/10.1126/science.1067404

2. D.Logeart-Avramoglou, F.Anagnoston, R.Bizios, H.Petite, J. Cell. Mol. Med., 9, 1 (2005). https://doi.org/10.1111/j.1582-4934.2005.tb00338.x

3. O.Sych, N.Pinchuk, A.Parkhomey et al., Functional Materials, 14, 4 (2007).

4. V.Scorokhod, L.Ivanchenko, N.Pinchuk et al., Functional Materials, 13, 260 (2006).

5. O.Otychenko, T.Babutina, O.Kuda et al., Functional Materials, 24, 4 (2017). https://doi.org/10.15407/fm24.04.577

6. S.M.Barinov, V.S.Komlev, Calcium Phosphate Based Bioceramics, Nauka Publ., Moscow (2005) [in Russian].

7. V.V.Smirnov, S.M.Barinov, V.S.Komlev, M.A.Goldberg, Mater. Scie., 6 (2012).

8. K.T.Chu, Y.Oshida, E.B.Hancock et al., Biomed. Mater. Eng., 14, 87 (2004).

9. S.B.Kim, Y.J.Kim, S.A.Park et al., Biomater., 25, 5715 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.022

10. J.Donaldson, H.E.Thomson, N.J.N.J.Harper, N.W.Kenny, British J. Anaesthesia, 102, 1 (2009). https://doi.org/10.1093/bja/aen328

11. R.Raisin, O.Effat, M.N.Shahidan et al., J. Pathalogy, 35, 1 (2009).

12. T.L.Norman, T.Shultz, G.Noble et al., J. Biomechanics. 46, 5 (2013). https://doi.org/10.1016/j.jbiomech.2012.12.010

13. G.Gould, T.Goswami, Int. J. Biomed. Eng. Techn., 11, 2 (2013). https://doi.org/10.1504/IJBET.2013.055031

14. Y.Chang, C.L.Tai, P.H.Hsieh, S.W.Ueng, Bone Joint Res. 15, 2 (2013).

15. S.Zhilong, K.G.Neoh, E.T.Kang, Biomater., 27, 11 (2006).

16. R.K.Roeder, G.L.Converse, R.J.Kane, W.Yee, Biolog. Mater. Science, 3, 139 (2008).

17. S.Krivileva, A.Rassokha, Minerals and Mountain Breeds, Point Publ., Kharkiv (2014) [in Russian].

18. V.Shevchenko, M.Balmakov, Phys. Chem. Glass, 28, 6 (2002).

19. A.Rassokha, S.Krivileva, Bulletin of NTU KhPI, 57, 1030 (2013).

20. A.N.Vinchell, G.Vinchell. Optical Properties of Artificial Minerals, Moscow (1980) [in Russian].

21. D.Corbrigj, Phosphorus: the Fundamentals of Chemistry, Biochemistry, Technology, Wold Publ., Moscow (1980) [in Russian].

22. S.Krivileva, V.Moiseev, Functional Materials, 25, 358 (2018). https://doi.org/10.15407/fm25.02.358

23. P.Huron, In-NoJung. Metallurg. Mater. Trans. B, 1, 46 (2015)

Current number: