Funct. Mater. 2018; 25 (4): 652-657.

doi:https://doi.org/10.15407/fm25.04.652

Scintillation properties of ACa1-yEuyX3 (A = K, Rb, Cs, X = Cl, Br) crystals

A.Yu.Grippa, N.V.Rebrova, T.E.Gorbacheva, V.L.Cherginets

Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The presented paper describes a series of new Eu2+-activated scintillators of Ca1-yEuyX2, ACa1-yEuyX3, (A=K, Rb, Cs; X=Cl, Br, 0 ≤y≤0.08). All the single crystals were grown using the Bridgman-Stockbarger method and their operational characteristics were compared including affinity for atmospheric moisture and scintillation properties (light yield, energetic resolution and decay constant of scintillation light). The maximal values of light yield of ACa0.92Eu0.08X3 materials in the sequence A = K, Rb, Cs were observed for Rb-containing crystals: 38500 photons per MeV for RbCa0.92Eu0.08Cl3 and 54000 photons per MeV for RbCa0.92Eu0.08Br3. The distribution coefficients of Eu2+ in all the studied crystals are very close to unity that can be explained by perfect isomorphism of Eu2+ and Ca2+ cations.

Keywords: 
scintillation materials, Bridgman-Stockbarger method, calcium halides.
References: 

1. E.V.van Loef, C.M.Wilson, N.J.Cherepy et al., IEEE Trans. Nucl. Sci., 56, 869 (2009). https://doi.org/10.1109/TNS.2009.2013947

2. N.J.Cherepy, S.A.Payne, S.J.Asztalos et al., IEEE Trans. Nucl. Sci., 56, 873 (2009). https://doi.org/10.1109/TNS.2009.2020165

3. Y.Yokota, S.Kurosawa, K.Nishimoto et al., J. Cryst. Growth, 401, 343 (2014). https://doi.org/10.1016/j.jcrysgro.2014.02.031

4. A.Yoshikawa, Y.Shoji, Y.Yokota et al., J. Cryst. Growth. 452, 73 (2016).

5. M.Zhuravleva, B.Blalock, K.Yang, J.Cryst. Growth, 352, 115 (2012). https://doi.org/10.1016/j.jcrysgro.2012.02.025

6. K.Yang, M.Zhuravleva, C.L.Melcher, Phys. Stat. Solidi RRL, 5, 43 (2011). https://doi.org/10.1002/pssr.201004434

7. V.L.Cherginets, A.Yu.Grippa, T.P.Rebrova et al., Functional Materials, 19, 187 (2012).

8. V.L.Cherginets, A.Yu.Grippa, T.P.Rebrova et al., Functional Materials, 19, 429 (2012).

9. V.L.Cherginets, N.V.Rebrova, A.Yu.Grippa et al., Mater. Chem. Phys., 143, 1296 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.037

10. L.Stand, M.Zhuravleva, B.Chakoumakos et al., J. Luminescence, 169, 301 (2016). https://doi.org/10.1016/j.jlumin.2015.09.013

11. M.S.Alekhin, D.Biner, K.W.Kraemer et al., J. Luminescence, 145, 723 (2014). https://doi.org/10.1016/j.jlumin.2013.08.058

12. R.Borade, E.Bourret-Courchesne, S.Derenzo et al., Nucl. Instr. Meth. Phys. Res. A, 652, 260 (2011). https://doi.org/10.1016/j.nima.2010.08.093

13. L.Stand, M.Zhuravleva, A.Lindsey et al., Nucl. Instr. Meth. Phys. Res. A, 780, 40 (2015). https://doi.org/10.1016/j.nima.2015.01.052

14. L.Stand, M.Zhuravleva, H.Wei et al., Opt. Mater., 46, 59 (2015). https://doi.org/10.1016/j.optmat.2015.04.002

15. A.C.Lindsey, M.Zhuravleva, L.Stand et al., Opt. Mater., 48, 1 (2015). https://doi.org/10.1016/j.optmat.2015.07.017

16. N.V.Rebrova, A.S.Pushak, A.Yu.Grippa et al., Mater. Chem. Phys., 192, 356 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.072

17. E.D.Bourret-Courchesne, G.A.Bizarri, R.Borade et al., J. Cryst. Growth, 352, 78 (2012). https://doi.org/10.1016/j.jcrysgro.2012.01.014

18. A.Yu.Grippa, N.V.Rebrova, T.E.Gorbacheva et al., J. Cryst. Growth, 371, 112 (2013). https://doi.org/10.1016/j.jcrysgro.2013.02.020

19. N.V.Rebrova, A.Yu.Grippa, A.S.Pushak et al., J. Cryst. Growth, 466, 39 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.016

20. N.V.Rebrova, A.Yu.Grippa, A.S.Pushak et al., Cryst. Res. Technol., 52, 1600404 (2017). https://doi.org/10.1002/crat.201600404

21. N.V.Rebrova, A.Yu.Grippa, A.S.Pushak et al., Functional Materials, 24, 221 (2017). https://doi.org/10.15407/fm24.02.221

22. E.Sysoeva, V.Tarasov, O.Zelenskaya, Nucl. Instr. Meth. Phys. Res. A, 486, 67 (2002). https://doi.org/10.1016/S0168-9002(02)00676-9

23. M.Ionashiro, C.A.F.Graner, J.Zuanon Netto, Ecle'tica Qui'mica, 8, 29 (1983). https://doi.org/10.26850/1678-4618eqj.v8.1.1983.p29-32

24. H.J.Seifert, D.Haberhauer, Z.Anorg, Allg. Chem., 491, 301 (1982). https://doi.org/10.1002/zaac.19824910139

25. R.P.Clark, F.W.Reinhardt, Thermochim. Acta, 12, 309 (1975). https://doi.org/10.1016/0040-6031(75)85044-1

26. I.V.Shakhno, V.E.Plyushchev, Zh. Neorg. Khim., 5, 1172 (1960).

27. G.S.Perry, K.N.Moody, Thermochim. Acta, 198, 167 (1992). https://doi.org/10.1016/0040-6031(92)85070-C

28. C.J.Howard, B.J.Kennedy, C.Curfs, Phys. Rev. B 72, 214114 (2005).

29. V.M.Goldshmidt, Besprechund Chemie, 57, 59 (1944).

30. P.A.Rodnyi, Physical Processes in Inorganic Scintillators. CRC Press, New York (1997).

31. A.Yu.Grippa, N.V.Rebrova, T.E.Gorbacheva et al., Nucl. Instr. Meth. Phys. Res. A, 729, 356 (2013). https://doi.org/10.1016/j.nima.2013.07.077

Current number: