Funct. Mater. 2018; 25 (4): 658-664.

doi:https://doi.org/10.15407/fm25.04.658

Mixed ZnSxSe1-x crystals for digital radiography detectors

O.G.Trubaieva1, M.A.Chaika2, W.Paszkowicz3

1Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50422 Wroclaw, Poland
3Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow al., 02-668 Warsaw, Poland

Abstract: 

A possibility to use ZnSxSe1-x as a material for detection of X-ray and alpha particles has been studied. The influence of the sulphur content on the properties of ZnSxSe1-x crystals is analyzed. The bulk ZnSxSe1-x crystals were obtained by Bridgman-Stockbarger method. Six different plates cut off from the crystals with x from 0.07 to 0.39 were studied. It is found that intensity of X-ray luminescence spectra of ZnSxSe1-x plates increases with increasing sulfur content, reaching the maximum value for ZnS0.22Se0.78 composition. The scintillation light output of ZnSxSe1-x plates is shown to be higher than for commercial ZnSe(Te) and ZnSe(Al) crystals.

Keywords: 
ZnS<sub>x</sub>Se<sub>1-x</sub> bulk crystals, radiation detectors, alpha detector, scintillators, X-ray luminescence.
References: 

1. V.Ryzhikov, N.Starzhinskiy, L.Gal'chinetskii et al., J. IEEE Nucl. Sci., 48, 356 (2001). https://doi.org/10.1109/23.940080

2. A.I.Focsha, P.A.Gashin, V.D.Ryzhikov et al., Inorg. Mater,, 3, 1223 (2001). https://doi.org/10.1016/S1466-6049(01)00134-9

3. M.Emam-Ismail, M.El-Hagary, E.Ramadan et al., Radiat. Eff. Defect. S., 169, 61 (2014). https://doi.org/10.1080/10420150.2013.811505

4. N.Kolesnikov, E.B.Borisenko, D.N.Borisenko et al., J. Cryst. Growth, 401, 849 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.086

5. S.Cool, S.Miller, C.Brecher et al., J. IEEE Nucl. Sci., 57, 944 (2010). https://doi.org/10.1109/TNS.2010.2045007

6. N.G.Starzhinskiy, B.V.Grinyov, L.P.Galchinetskii et al., Institute for Single Crystals, Kharkov (2007).

7. A.Wagner, W.P.Tan, K.Chalut et al., J. Cryst. Growth, 456, 290 (2001).

8. S.Usuda. J. Nucl. Sci. Tech., 299, 927 (1992).

9. K.Mochizuki, M.Takakusaki, Phys. Status Solidi. A, 94, 243 (1986). https://doi.org/10.1002/pssa.2210940129

10. M.E.Ozsan, J.Woods, Appl. Phys. Lett., 25, 489 (1974). https://doi.org/10.1063/1.1655560

11. Y.Shirakawa, H.Kukimoto, Solid State Commun., 34, 359 (1980). https://doi.org/10.1016/0038-1098(80)90575-X

12. N.B.Singh, C.H.Su, B.Arnold et al., J. Opt. Mater., 60, 474 (2016). https://doi.org/10.1016/j.optmat.2016.08.031

13. E.L.Trukhanova, V.I.Levchenko, L.I.Postnova, Inorg. Mater., 50, 10 (2014). https://doi.org/10.1134/S0020168514010191

14. E.L.Barsukova, L.I.Postnova, V.I.Levchenko, Crystallogr. Rep., 54, 1245 (2009). https://doi.org/10.1134/S1063774509070189

15. J.S.Prener, F.E.Williams, J. Electrochem. Soc., 103, 342 (1956). https://doi.org/10.1149/1.2430325

16. J.S.McCloy, M.Bliss, B.Miller et al., J. Luminescence, 157, 416 (2015). https://doi.org/10.1016/j.jlumin.2014.09.015

17. V.B.Pham, T.T.Phan, J. Sci., 24, 181 (2008).

18. R.H.Hussein, O.Pages, F.Firszt et al., J. Appl. Phys., 116, 083511 (2014). https://doi.org/10.1063/1.4893322

19. R.H.Hussein, O.Pages, S.Doyen-Schuler et al., J. Alloy. Compd., 644, 704 (2015). https://doi.org/10.1016/j.jallcom.2015.04.078

20. R.H.Hussein, O.Pages, A.Polian et al., J. Physics-Condens. Mat., 28, 205401 (2016). https://doi.org/10.1088/0953-8984/28/20/205401

21. S.Fujita, H.Mimoto, H.Takebe et al., J. Cryst. Growth, 47, 326 (1979). https://doi.org/10.1016/0022-0248(79)90195-7

22. GOST 17038.2-79 Scintillation Detectors of Ionizing Radiation. The Method of Measuring the Light Output of the Detector at the Peak of Total Absorption.

23. L.Vegard, Z. Phys. A-Hadron. Nucl., 5, 17 (1921).

24. T.Homann, U.Hotje, M.Binnewies et al., Solid State Sci., 8, 44 (2006). https://doi.org/10.1016/j.solidstatesciences.2005.08.015

25. S.Venkatachalam, D.Mangalaraj, S.K.Narayandass et al., Semicond. Sci. Techn., 21, 1661 (2006). https://doi.org/10.1088/0268-1242/21/12/027

26. Y.Chen, J.Li, X.Yang et al., J. Phys. Chem. C, 115, 23338 (2011). https://doi.org/10.1021/jp209933v

27. K.B.Sundaram, G.K.Bhagavat, J. Phys. D. Appl. Phys., 14, 921 (1981). https://doi.org/10.1088/0022-3727/14/5/025

28. O.G.Trubaieva, A.I.Lalayants, M.A.Chaika, UJP, 63, 33 (2018). https://doi.org/10.15407/ujpe63.01.0033

29. A.B.Novoselova, V.B.Lazarev, Handbook, Moscow (1978) [in Russian].

30. P.Herve, L.K.J.Vandamme, Infrared Phys. Techn., 35, 609 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

31. B.R.Pamplin, Crystal growth, Pergamon Press, New York (1975).

32. S.Larach, R.E.Shrader, C.F.Stocker, Phys. Rev., 108, 587 (1957). https://doi.org/10.1103/PhysRev.108.587

33. V.D.Ryzhikov, N.G.Starzhinskiy, L.P.Gal'chinetskii et al., Inorg. Mater., 3, 1227 (2001). https://doi.org/10.1016/S1466-6049(01)00138-6

34. N.N.Berchenko, V.E.Krevs, V.G.Sredni, Spreadsheets, Voenizdat, Moscow (1982) [in Russian].

35. A.M.Gurvich, Graduate School, Moscow (1971) [in Russian].

36. O.G.Trubaieva, M.A.Chaika, O.V.Zelenskaya, UJP, 63, 546 (2018). https://doi.org/10.15407/ujpe63.6.546

Current number: