Funct. Mater. 2018; 25 (4): 675-680.

doi:https://doi.org/10.15407/fm25.04.675

Development of anti-reflecting surfaces based on Si micropyramids and wet-chemically etched Si nanowire arrays

A.A.Druzhinin, V.Y.Yerokhov, S.I.Nichkalo, O.Y.Ostapiv

Lviv Polytechnic National University, 12 S.Bandera Str., 79013 Lviv, Ukraine

Abstract: 

In this paper experimental results on study of optical properties of Si wafers with surface textures in form of Si random pyramids, Si nanowire arrays, and pyramidal Si combined with Si nanowire arrays are presented. It is shown that the use of the metal-assisted chemical etching method allows to fabricate an array of Si nanowires, and a complex structure composed of Si pyramids with nanotextured side faces which possess a high degree of anti-reflecting ability. Experimental results of the absorbance and reflectance spectra measuring demonstrated that in comparison with other textures, the structures with nanotextured pyramids' side faces exhibit the highest absorption (~ 98 %) and lowest reflection values (~ 1 %) in all range of wavelength (300-1100 nm). The concept of a complex structure combining the advantages of pyramids and Si nanowires to achieve the omnidirectional light absorption and overcome the directional dependence of photovoltaic performance is discussed.

Keywords: 
silicon nanowire, absorption, reflection, solar cell, metal-assisted chemical etching.
References: 

1. J.Zhao, A.Wang, M.A.Green et al., Appl. Phys. Lett., 73, 1991 (1998). https://doi.org/10.1063/1.122345

2. V.Yu.Yerokhov, I.I.Melnyk, Sol.-State Electr., 42, 883 (1998). https://doi.org/10.1016/S0038-1101(98)00101-4

3. M.A.Green, Adv. Mater., 13, 1019 (2001). https://doi.org/10.1002/1521-4095(200107)13:12/13<1019::AID-ADMA1019>3.0.CO;2-I

4. V.Y.Yerokhov, R.Hezel, M.Lipinski et al., Solar Ener. Mater. Solar Cells, 72, 291 (2002). https://doi.org/10.1016/S0927-0248(01)00177-5

5. R.M.Swanson, Progr. Photovolt. Res. Appl., 14, 443 (2006). https://doi.org/10.1002/pip.709

6. C.H.Sun, W.L.Min, N.C.Linn et al., Appl. Phys. Lett., 91, 231105 (2007). https://doi.org/10.1063/1.2821833

7. A.K.Chu, J.S.Wang, Z.Y.Tsai et al., Solar Ener. Mater. Solar Cells, 93, 1276 (2009). https://doi.org/10.1016/j.solmat.2009.01.018

8. H.P.Wang, K.Y.Lai, Y.R.Lin et al., Langmuir, 26, 12855 (2010). https://doi.org/10.1021/la1012507

9. S.E.Han, G.Chen, Nano Lett., 10, 4692 (2010). https://doi.org/10.1021/nl1029804

10. F.Y.Wang, Q.D.Yang, G.Xu et al., Nanoscale, 3, 3269 (2011). https://doi.org/10.1039/c1nr10266d

11. H.Lin, F.Xiu, M.Fang et al., ACS Nano, 8, 3752 (2014). https://doi.org/10.1021/nn500418x

12. H.P.Wang, T.Y.Lin, M.L.Tsai et al., ACS Nano, 8, 2959 (2014). https://doi.org/10.1021/nn500257g

13. A.Druzhinin, V.Yerokhov, S.Nichkalo et al., J. Nano Res., 39, 89 (2016). https://doi.org/10.4028/www.scientific.net/JNanoR.39.89

14. A.Druzhinin, E.Lavitska, I.Maryamova, Sens. Actuat. B: Chem., 58, 415 (1999).

15. I.Maryamova, A.Druzhinin, E.Lavitska et al., Sens. Actuat. A: Phys., 85, 153 (2000).

16. Y.Cui, Q.Q.Wei, H.K.Park et al., Science, 293, 1289 (2001). https://doi.org/10.1126/science.1062711

17. G.Zheng, F.Patolsky, Y.Cui et al., Nature Biotechn., 23, 1294 (2005). https://doi.org/10.1038/nbt1138

18. J.Goldberger, A.I.Hochbaum, R.Fan et al., Nano Lett., 6, 973 (2006). https://doi.org/10.1021/nl060166j

19. A.Druzhinin, I.Ostrovskii, Iu.Kogut, Mater. Scien. Semicond. Proces., 9, 853 (2006). https://doi.org/10.1016/j.mssp.2006.08.070

20. C.K.Chan, H.L.Peng, G.Liu et al., Nature Nanotechn., 3, 31 (2008). https://doi.org/10.1038/nnano.2007.411

21. A.Hochbaum, R.Chen, R.D.Delgado et al., Nature, 451, 163 (2008). https://doi.org/10.1038/nature06381

22. A.Druzhinin, I.Ostrovskii, I.Kogut et al., Phys. Stat. Sol. C, 8, 867 (2011).

23. L.Tsakalakos, J.Balch, J.Fronheiser et al., J.Nanophot., 1, 013552 (2007). https://doi.org/10.1117/1.2768999

24. L.Tsakalakos, J.Balch, J.Fronheiser et al., Appl.Phys. Lett., 91, 233117 (2007). https://doi.org/10.1063/1.2821113

25. E.C.Garnett, P.Yang, J. Amer. Chem. Soc., 130, 9224 (2008). https://doi.org/10.1021/ja8032907

26. M.D.Kelzenberg, D.B.Turner-Evans, B.M.Kayes et al., Nano Lett., 8, 710 (2008). https://doi.org/10.1021/nl072622p

27. T.Stelzner, M.Pietsch, G.Andra et al., Nanotechn., 19, 295203 (2008). https://doi.org/10.1088/0957-4484/19/29/295203

28. J.Li, H.Yu, S.M.Wong et al., Appl. Phys. Lett., 95, 033102 (2009). https://doi.org/10.1063/1.3186046

29. K.Q.Peng, S.T.Lee, Adv. Mater., 23, 198 (2011). https://doi.org/10.1002/adma.201002410

30. A.A.Druzhinin, V.Y.Yerokhov, S.I.Nichkalo et al., J. Nano. Electr. Phys., 7, 02030-1-02030-6 (2015).

31. J.Ramanujam, D.Shiri, A.Verma, Mater. Express, 1, 105 (2011). https://doi.org/10.1166/mex.2011.1013

32. X.Li, J.Li, T.Chen et al., Nanoscale Res. Lett., 5, 1721 (2010). https://doi.org/10.1007/s11671-010-9701-3

33. S.Nichkalo, A.Druzhinin, A.Evtukh et al., Nanoscale Res. Lett., 12, 106 (2017). https://doi.org/10.1186/s11671-017-1886-2

34. Z.Pei, H.Hu, S.Li et al., Langmuir, 33, 3569 (2017). https://doi.org/10.1021/acs.langmuir.6b04068

35. K.Q.Peng, Y.J.Yan, S.P.Gao et al., Adv.. Mater., 14, 1164 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E

36. Z.Huang, N.Geyer, P.Werner et al., Adv. Mater., 23, 285 (2011). https://doi.org/10.1002/adma.201001784

37. M.Pavlenko, E.L.Coy, M.Jancelewicz et al., RSC Adv., 6, 97070 (2016). https://doi.org/10.1039/C6RA21742G

38. A.A.Druzhinin, I.P.Ostrovskii, Phys. Stat.Sol. C, 1, 333 (2004).

39. V.Schmidt, S.Senz, U.Gosele, Nano Lett., 5, 931 (2005). https://doi.org/10.1021/nl050462g

40. A.Druzhinin, A.Evtukh, I.Ostrovskii et al., Springer Proc. Phys., 156, 301 (2015). https://doi.org/10.1007/978-3-319-06611-0_24

41. G.Yuan, K.Aruda, S.Zhou et al., Angew. Chem. Intern. Edit., 50, 2334 (2011). https://doi.org/10.1002/anie.201006617

42. B.Parida, J.Choi, G.Lim et al., J. Nanosci. Nanotechn., 14, 9224 (2014). https://doi.org/10.1166/jnn.2014.10129

43. C.Lin, M.L.Povinelli, Opt. Expr., 19, A1148 (2011).

44. H.Bao, X.Ruan, Opt. Lett., 35, 3378 (2010). https://doi.org/10.1364/OL.35.003378

Current number: