Funct. Mater. 2018; 25 (4): 684-688.

doi:https://doi.org/10.15407/fm25.04.684

Peculiarities of excitonic energy transfer at the distance variation between J-aggregates and exciton traps

A.V.Sorokin, I.Yu.Ropakova, I.A.Borovoy, S.L.Yefimova, Yu.V.Malyukin

Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Molecular aggregates called J-aggregates are excitonic systems which could be used as optical antennas. Preliminary experiments demonstrated an effective resonance energy transfer from J-aggregates to other dyes playing role of exciton traps by Forster mechanism. In the present study we report unexpected behavior of the distance dependence of the energy transfer in J-aggregate-exciton trap system. Contrary to typical Forster energy transfer dependence as ~ d-6, the trap sensitized luminescence reveals nonmonotonic dependence with a maximum at ~ 10 nm distance between the J-aggregates and the exciton traps.

Keywords: 
j-aggregates, exciton, energy transfer, exciton trap, luminescence.
References: 

1. T.Kobayashi (ed.), J-Aggregates, World Scientific, Singapore (1996).

2. T.Kobayashi (ed.), J-Aggregates, Vol. 2, World Scientific, Singapore (2012).

3. J.Knoester, V.M.Agranovich, in: Thin Film and Nanostructures: Electronic Excitations in Organic Based Nanostructures, Vol. 31, V.M.Agranovich and G.F.Bassani (eds.), Elsevier Academic Press, Amsterdam (2003).

4. F.Wurthner, T.E.Kaiser, C.R.Saha-Moller, Angew. Chem. Int. Ed., 50, 3376 (2011). https://doi.org/10.1002/anie.201002307

5. Yu.V.Malyukin, A.V.Sorokin, V.P.Semynozhenko, Low Temp. Phys., 42, 429 (2016). https://doi.org/10.1063/1.4955493

6. A.V.Sorokin, S.L.Yefimova, Yu.V.Malyukin, in: Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Hoboken (2018).

7. G.M.Akselrod, B.J.Walker, W.A.Tisdale et al., ACS Nano, 6, 467 (2012). https://doi.org/10.1021/nn203789t

8. Yu.V.Malyukin, O.G.Tovmachenko, G.S.Katrich et al., Mol. Cryst. Liq. Cryst., 324, 267 (1998). https://doi.org/10.1080/10587259808047164

9. J.A.Tuszynski, M.F.Jorgensen, D.Mobius, Phys. Rev. E., 59, 4374 (1999). https://doi.org/10.1103/PhysRevE.59.4374

10. M.Sakomura, T.Takagi, H.Nakayama et al., Coll. Surf. A, 198-200, 769 (2002).

11. R.S.Grynyov, A.V.Sorokin, G.Y.Guralchuk et al., J. Phys. Chem. C, 112, 20458 (2008). https://doi.org/10.1021/jp809124m

12. A.V.Sorokin, I.I.Fylymonova, S.L.Yefimova, Yu.V.Malyukin, Opt. Mater., 34, 2091 (2012). https://doi.org/10.1016/j.optmat.2012.05.003

13. A.V.Sorokin, I.I.Filimonova, R.S.Grynyov et al., J. Phys. Chem. C, 114, 1299 (2010). https://doi.org/10.1021/jp906665j

14. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. Springer, Singapore (2006).

15. M.J.Gentile, S.Nunez-Sanchez, W.L.Barnes, Nano Lett., 14, 2339 (2014). https://doi.org/10.1021/nl404712t

16. A.Cacciola, C.Triolo, O.Di Stefano et al., ACS Photonics, 2, 971 (2015). https://doi.org/10.1021/acsphotonics.5b00197

17. A.N.Lebedenko, R.S.Grynyov, G.Y.Guralchuk et al., J. Phys. Chem. C, 113, 12883 (2009). https://doi.org/10.1021/jp903328r

18. G.Decher, J.B.Schlenoff (eds.), Multilayer Thin Films, Wiley-VCH Verlag, Weinheim (2012).

19. H.Fukumoto, Y.Yonezawa, Thin Sol. Films, 327-329, 748 (1998).

20. M.S.Bradley, J.R.Tischler, V.Bulovic, Adv. Mater., 17, 1881 (2005). https://doi.org/10.1002/adma.200500233

21. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 118, 7599 (2014). https://doi.org/10.1021/jp412798u

22. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 119, 2743 (2015). https://doi.org/10.1021/jp5102626

23. A.V.Sorokin, N.V.Pereverzev, V.M.Liakh et al., Functional Materisls, 22, 316 (2015). https://doi.org/10.15407/fm22.03.316

24. S.L.Yefimova, A.V.Sorokin, I.K.Katrunov, Y.V.Malyukin, Low Temp. Phys., 37, 157 (2011). https://doi.org/10.1063/1.3556666

25. N.V.Pereverzev, I.A.Borovoy, O.O.Sedyh et al., Functional Materials, 21, 409 (2014). https://doi.org/10.15407/fm21.04.409

26. C.D.Geddes (ed.), Metal-Enhanced Fluorescence, John Wiley & Sons, Hoboken (2010).

27. R.Badugu, J.R.Lakowicz, in: Encyclopedia of Spectroscopy and Spectrometry, 3rd Ed., J.C.Lindon, G.E.Tranter, D.W.Koppenaal (eds.). Academic Press (2017).

28. P.Anger, P.Bharadwaj, L.Novotny, Phys. Rev. Lett., 96, 113002 (2006). https://doi.org/10.1103/PhysRevLett.96.113002

.

Current number: