Funct. Mater. 2018; 25 (4): 689-694.

doi:https://doi.org/10.15407/fm25.04.689

Double phosphates NaMn6(P3O10)(P2O7)2 and KMn6(P3O10)(P2O7)2 - advanced functional materials

P.G.Nagorny1, N.S.Slobodyanik1, T.I.Ushchapivska2, R.V.Lavrik2

1Department of Inorganic Chemistry, T.Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01601 Kyiv, Ukraine
2National University of Life and Environmental Sciences of Ukraine, 17 Heroyiv Oborony St., 03041 Kyiv, Ukraine

Abstract: 

Complex phosphates containing two different ions have been identified in the fluxes of M2O-P2O5-Mn2O3 systems (where M - Na, K) for the first time. Optimum conditions for the growing of single crystals of NaMn6(P3O10)(P2O7)2 and KMn6(P3O10)(P2O7)2 compounds have been selected. Complete X-ray diffraction analysis has been performed to study single crystals of synthesized phosphates MMn6(P3O10)(P2O7)2 (where M - Na, K). The structure of compounds is defined by the monoclinic crystal system (space group P21/m) with lattice parameters: a = 5.350 (5.358) Å, b =26.643 (26.697) Å, c = 6.566 (6.575) Å, β = 107.250 (107.220); Z = 2, ρ = 3.575(3.568) g/cm3, respectively. The synthesized compounds have been studied using the following techniques: DTA, IR- and EPR-spectroscopy, magnetochemistry; the dependence of dielectric constant on the temperature has been measured for the obtained phosphates. Slight antiferromagnetic interaction has been detected in octahedron chains [MnO6]. Based on the findings from conducted research, a set of physicochemical properties has been proposed for the synthesized compounds, which can be utilized in the development of these functional materials.

Keywords: 
complex phosphates, EPR, flux crystallization, XRD.
References: 

1. M.D.Kaminski, C.J.Mertz, M.Ferrandon et al., J. Nucl. Mater., 392, 510 (2009). https://doi.org/10.1016/j.jnucmat.2009.04.020

2. A.I.Orlova, A.K.Koryttseva, E.E.Loginova, Radiochemistry, 53, 51 (2011). https://doi.org/10.1134/S1066362211010073

3. V.I.Pet'kov, E.A.Asabina, A.A.Lukuttsov et al., Radiochemistry, 57, 632 (2015). https://doi.org/10.1134/S1066362215060119

4. S.Gin, A.Abdelouas, L.J.Criscenti et al., Mater. Today, 16, 243 (2013). https://doi.org/10.1016/j.mattod.2013.06.008

5. E.V.Murashova, N.N.Chudinova, Inorg. Mater., 10, 1019 (1998).

6. I.V.Zatovsky, N.S.Slobodyanik et al., Functional Materials, 24, 298 (2017). https://doi.org/10.15407/fm24.02.298

7. R.V.Lavrik, P.G.Nagornyj, N.S.Slobodyanik, Ukr. Khim. Zh., 72, 22 (2006).

8. K.L.Kasthuri, P.B.Raghavendra, C.K.Subramanian, J. Solid State Chem., 3, 41 (1994).

9. T.A.William, L.F.Harrison, Mark Phillips, Chem. Mater., 3555 (1999).

10. I.V.Ogorodnyk, V.N.Baumer, I.V.Zatovsky et al., Acta Cryst. Sec. B., 63, 819 (2007). https://doi.org/10.1107/S0108768107049385

11. I.V.Zatovsky, M.M.Yatskin, V.N.Baumer et al., Acta Cryst. Sec. E., 63, i199 (2007).

12. V.N.Baumer, O.V.Shishkin et al., Reports NASU, No. 3, 131 (2003).

13. G.M.Sheldrick, SHELX-97. A Progr. for Cryst. Struct. Ref., University of Goettingen, Germany (1997).

14. B.Klinkert, M.Jansen, Z.Anorg. Allg. Chem., 570, 102 (1989). https://doi.org/10.1002/zaac.19895700109

.

Current number: