Funct. Mater. 2018; 25 (4): 713-719.

doi:https://doi.org/10.15407/fm25.04.713

New gadolinium-substituted lead sodium apatite structure

Mohammed A. B. Abdul Jabar1, E.I.Get'man2, A.V.Ignatov2

1Department of Microbiology, College of Science, Al-Karkh University of Science, Hayfa Street, Baghdad 10001, Iraq
2Department of Inorganic Chemistry, Donetsk National University, 24 Universitets'ka, Donets'k 83001, Ukraine

Abstract: 

The substitution of gadolinium by lead in the compound Pb8-xNa2Gdx(PO4)6Ox/2, in accordance with the scheme 2Pb2+ + • ↠ 2Gd3+ + O2- was studied by means of powder X-ray diffraction (including the Rietveld refinement). It was established that solid solutions apatite samples are synthesized at 900 °C between the range from x = 0.0 up to x = 1.0. Rietveld method shows that Gd3+ is located in positions Pb(2), resulting in the distance in a polyhedron Pb(2) where the structure of apatite decreased.

Keywords: 
lead, apatite, gadolinium, substitution, solid solution.
References: 

1. Y. Pan, ME. Fleet, Mineralog. Soc. .Amer., 48, 13 (2002).

2. D. Hammond, the Basics of Crystallography and Diffraction. Oxford University Press, Oxford (1997).

3. T.J. White, C. Ferraris, J. Kim, S. Madhavi, Mineralog. Soc. Amer., 57, 307 (2005).

4. Xi Liu, Sean R. Shieh, Michael E. Fleet et al., Amer. Mineralog., 93, 1581 (2008). https://doi.org/10.2138/am.2008.2816

5. S.V. Dorozhkin, J. Matter. Res., 46, 135 (1999). https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<135::AID-JBM1>3.0.CO;2-M

6. J. Zhang, H. Liang, R. Yu, et al., Mater. Chem. Phys., 114, 242 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.045

7. S. Kale, S. Kahandal, S. Disale et al., Curr. Chem. Lett., 1, 69 (2012). https://doi.org/10.5267/j.ccl.2012.3.002

8. D. Grossin, S. Rollin-Martinet, C. Estourne's et al., Acta Biomater., 6, 577 (2010). https://doi.org/10.1016/j.actbio.2009.08.021

9. H. Yoshioka, Y. Nojiri, S. Tanase, Solid State Ionics, 179, 2165 (2008). https://doi.org/10.1016/j.ssi.2008.07.022

10. R. K. Osterheld, J. D. Hawthorne, J. Solid State Chem., 7, 106 (1973). https://doi.org/10.1016/0022-4596(73)90128-X

11. Fatima-Zahra Boujrhala, Bouchra Sghirb, Herbert Poellmannc et al., Acta Cryst (25th Europ. Crystallog. Meet., ECM 25, Istanbul), 65, 299 (2009).

12. Mohamed Toumi, Tahar Mhiri, J. Cer. Soc. Japan, 116, 904, (2008).

13. L.R.Morss, Chem. Rev., 76, 827 (1976). https://doi.org/10.1021/cr60304a007

14. M.E. Fleet, Y. Pan, J. Solid State Chem., 3, 78 (1994). https://doi.org/10.1006/jssc.1994.1268

15. P.E. Mackie, R.A. Young, J. Appl. Crystallography, 6, 26 (1973). https://doi.org/10.1107/S0021889873008009

16. M.E. Fleet, Y. Pan, Amer Mineralogist, 80, 329 (1995). https://doi.org/10.2138/am-1995-3-414

17. Evgeni I. Get'man, Alexey V. Ignatov, Mohammed A. B. Abdul Jabar et al., J. Inorg. Chem., 55, 2165 (2016). https://doi.org/10.1021/acs.inorgchem.5b02571

18. I. Mayer, A. Semadja, V. Weiss, J. Solid State Chem., 34, 223 (1980). https://doi.org/10.1016/0022-4596(80)90225-X

19. J. Rodriguez-Carvajal, Program FullProf.2k, Version 2.20, Laboratoire Leon Brillouin (CEA-CNRS), France (2002).

20. T. Roisnel, J. Rodriguez-Carvajal, Materials Science Forum, Proc. Seventh European Powder Diffraction Conf. (EPDIC 7), Barcelona, 118 (2000).

21. R.M. Wilson, J.C. Elliot, S.E.P Dowker. Amer. Miner., 84, 1406 (1999). https://doi.org/10.2138/am-1999-0919

22. A.S. Posner, A. Perloff, A.F. Diorio, Acta Cryst., 11, 308 (1958). https://doi.org/10.1107/S0365110X58000815

23. R. D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr, 32, 751 (1976).

24. N. Kachanov, L. Mirkin, Rentgenostrukturnyj analis; Mashgiz: Moscow (1960) [in Russian]

.

Current number: