Funct. Mater. 2018; 25 (4): 774-779.

doi:https://doi.org/10.15407/fm25.04.774

Simulation of the insulating properties of two-layer material

I.F.Dadashov, A.A.Kireev, I.K.Kirichenko, A.A.Kovalev, A.Ya.Sharshanov

National University of Civil Protection of Ukraine, 94 Chernyshevska Str., 61028 Kharkiv, Ukraine

Abstract: 

Mathematical simulation of the process of diffusion of liquid vapors through a binary layer consisting of a light granular material and a layer of gel applied on its surface is shown. Using the proposed model the coefficient of octane evaporation rate reduction on the onset of the stationary mode was determined, and the time for reaching this mode was estimated. For a gel layer with thickness of 2 mm and a layer of foam glass with thickness of 5 cm, the evaporation rate of octane is reduced by more than 100 times compared with the evaporation rate from the free surface of the liquid. Two-layer insulating materials are proposed to use for elimination of emergencies associated with the spill of toxic and flammable liquids, as well as for extinguishing fires involving flammable liquids.

Keywords: 
mathematical simulation, vapors of flammable liquids, diffusion, two-layer material, porous coating, granulated foam glass, gel layer, flow reduction ratio.
References: 

1. R.C.Buck, J.Franklin, U.Berger et al., Integrated Environ. Assess. Manage., 7, 513 (2012). https://doi.org/10.1002/ieam.258

2. J.W.Martin, M.M.Smithwick, B.M.Braune et al., Environ Sci. Technol., 38, 373 (2004). https://doi.org/10.1021/es034727+

3. K.Kannan, S.Corsolini, J.Falandysz et al., Environ Sci. Technol., 38, 89 (2004).

4. V.V.Bocharov, Pozharovzryvobezopasnost', 22, 75 (2013).

5. RF Patent 2264242 (2005).

6. I.F.Dadashov, Keramika: Nauka i Zhizn', 2, 44 (2016).

7. Yu.A.Abramov, A.A.Kireev, Gelling Fire Extinguishing and Flame Retardant Means of Increased Efficiency in Relation to Class A Fires, NUCDU, Kharkiv (2015).

8. R.Ayler, The Chemistry of Silica, Wiley Interscience, New York (1979).

9. D.A.Friedrichsberg, Course of Colloid Chemistry, Khimiya, Leningrad (1974) [in Russian].

10. I.F.Dadashov, Problemi Tsyvil'nogo Zakhistu, 25, 22 (2017).

11. I.F.Dadashov, A.A.Kireev, A.Ya.Sharshanov et al,, Problemy Tsyvil'nogo Zakhistu, 26, 43 (2017).

12. I.F.Dadashov, Problemy Pozharnoy Bezopasnosti, 42, 27 (2017).

13. I.F.Dadashov, A.A.Kireev, A.Ya.Sharshanov, Problemy Pozharnoy Bezopasnosti, 42, 53 (2017).

14. I.F.Dadashov, A.A.Kireev, A.Ya.Sharshanov et al., Problemy Pozharnoy Bezopasnosti, 40, 78 (2016).

15. G.I.Barenblatt, V.M.Yentov, V.M.Ryzhik, Movement of Liquids and Gases in Natural Formations, Nedra, Moscow (1984) [in Russian].

16. G.I.Barenblatt, V.M.Yentov, V.M.Ryzhik, Theory of Non-stationary Filtration of Liquid and Gas, Nedra, Moscow (1972) [in Russian].

17. A.Ya.Sharshanov, Problemy Pozharnoy Bezopasnosti, 41, 206 (2017).

18. D.A.Frank-Kamenetskiy, Diffusion and Heat Transfer in Chemical Kinetics, Nauka, Moscow (1967) [in Russian].

19. B.N.Nikolsky, Chemist Handbook, Goskhimizdat, Leningrad (1963) [in Russian]

.

Current number: