Funct. Mater. 2018; 25 (4): 795-801.

doi:https://doi.org/10.15407/fm25.04.795

Method of obtaining an organic polycrystalline scintillator for detecting beta-radionuclide sources in natural waters

A.Yu.Andryushchenko1, K.N.Belikov1, N.Z.Galunov2,3, E.V.Martynenko2, I.V.Lazarev2, Ya.I.Polupan4, O.A.Tarasenko2

1State Scientific Institution STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Science of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine
3V.Karazin Kharkiv National University, 4 Svobody Sq., 61022, Kharkiv, Ukraine
4Kharkiv College of Trade and Economics of Kyiv National University of Trade and Economics, 202 Klochkovskaya St., 61000 Kharkiv, Ukraine

Abstract: 

The method of producing an organic polycrystalline scintillator with two-stage sorbent filled holes for detecting beta-emitting source of <f2m^>90Sr in natural water is proposed. That confirms that synthetic hydroxylapatite is the optimal sorbent to solving the problem. For the polycrystalline scintillator of p-terphenyl doped by 1,4-diphenylbutadiene-1,3 which has the holes filled with hydroxylapatite as a sorbent, the efficiency of detecting beta particles of 90Sr isotope sorbed from the water sample reaches 90 %.

Keywords: 
organic polycrystalline scintillator, sorbent, hydroxylapatite.
References: 

<1. Patent N57950A.

2. A.Yu.Andryushchenko, A.B.Blank, S.V.Budakovsky et al., Nucl. Instrum. Meth. Phys. Res., A511, 425 (2003).

3. A.Yu.Andryushchenko, A.B.Blank, S.V.Budakovsky et al., Anal. Chim. Acta, 480, 151 (2003). https://doi.org/10.1016/S0003-2670(02)01593-3

4. Patent 55633.

5. N.Z.Galunov, I.G.Homyakova, E.V.Martynenko et al., Probl. Atom. Sci. Techn., 4, 214 (2006).

6. T.E.Gorbacheva, N.Z.Galunov, V.D.Panikarskaya, I.V.Lazarev, Functional Materials, 20, 149 (2013). https://doi.org/10.15407/fm20.02.149

7. T.E.Gorbacheva, N.Z.Galunov, I.V.Lazarev et al., J. Appl. Spectr., 81, 164 (2014). https://doi.org/10.1007/s10812-014-9904-y

8. N.Z.Galunov, T.E.Gorbacheva, N.L.Karavaeva et al., Materialovedenie, 4, 51 (2014).

9. N.Z.Galunov, I.V.Lazarev, A.D.Samokhin. Ukraine Patent 106026.

10. I.V.Lazarev, Materialovedenie, 4, 47 (2015).

11. N.Z.Galunov, V.P.Seminozhenko, Radioluminescence of Organic Condensed Media, Naukova Dumka, Kyiv (2015).

12. Yu.V.Milman, N.Z.Galunov, S.I.Chugunova et al., Nanosistemy, Nanomaterialy, Nanotehnologiy, 14, 461 (2016).

13. V.S.Komarov, Adsorbents and their Properties, Nauka i Technika, Minsk (1977) [in Russian].

14. N.Z.Galunov, I.V.Lazarev, E.V.Martynenko et al., Mol. Cryst. Liq. Cryst., 615, 176 (2015).

15. E.Sysoeva, V.Tarasov, O. Zelenskaya, Nucl. Instrum. Meth., A486, 67 (2002).

16. Photomultipliers, Ruislip, UK: Electron Tubes Enterprises Limited (2007).

17. Radionuclide Transformations. Energy and Intensity of Emission, ICRP Publication 30, Pergamon Press, New York (1987)p>.

Current number: