Funct. Mater. 2019; 26 (1): 100-106.

doi:https://doi.org/10.15407/fm26.01.100

Composite &qout;graphene nanoplatelets - fluorine-containing polyamide&qout;: synthesis, properties and quantum-chemical simulation of electroconductivity

A.D.Kachkovsky1, E.L.Pavlenko2, E.V.Sheludko1, N.P.Kulish2, O.P.Dmitrenko2, V.A.Sendyuk2, P.S.Smertenko3, V.V.Kremenitsky4, O.P.Tarasyuk1, S.P.Rogalsky1

1V.Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 50 Kharkovskoe schosse, 02160 Kyiv, Ukraine
2T.Shevchenko Kyiv National University, Faculty of Physics, 64/13 Volodimirska Str., 03022 Kyiv, Ukraine
3V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine
4Technical Center, National Academy of Sciences of Ukraine, 13 Pokrovskaya Str., 04070 Kyiv, Ukraine

Abstract: 

Considered in the article is the basic possibility of increasing of electric conductivity of thermostable fluorine-containing aromatic polyamide by its doping with graphene platelets. The raised concentration of a conducting graphene phase (78 wt.%) in the top layer (~ 50 μm) of the film composite is established. The microstructure of cross-section of the film and topography of its surface are studied by SEM and AFM. Corresponding volt-ampere characteristics are resulted. Carried out here are quantum-chemical calculations of model system &qout;a polyamide fragment + graphene strip&qout;: localization of boundary and close molecular orbitals in the composite and also distribution of spin density of the composite in electric field. Conductivity of the composite is explained within the framework of stacking interaction between π-systems of the polymer and graphene.

Keywords: 
graphene platelets, polyamide, microstructure, stacking interaction, current-voltage characteristics, spin density, boundary orbital.
References: 

1. Yu.A.Mikhailin, Polymernie Materiali, 9, 1 (2016).

2. A.A.Beznischchenko, N.A.Davidenko, V.N.Kokozey et al., Dopovidi of NAS Ukraine, 5, 136 (2007).

3. V.Ye.Gul', V.F.Blinov, M.G.Golubeva et al., Plasticheskie Massy, 9, 45 (1976).

4. U.Abdurahmanov, F.I.Boimuratov, G.I.Mukhamedov, Radiotekhnika i Elektronika, 55, 237 (2010).

5. T.I.Kolesnikova, L.I.Duhovny, I.Yu.Schelekhov et al., Application of Traditional and Development of New Film Materials: Digest of Scientific Articles, Frantsevich IPMS of NASU, Kyiv (1994), p.108. 6 R.A.Andrievsky, A.V.Khachoyan, Russian Khim. Zh., LIII, 4 (2009).

7. K.S.Novoselov, Usp. Phyz. Nauk, 181, 1299 (2011). https://doi.org/10.3367/UFNr.0181.201112f.1299

8. L.A.Chernozatonsky, P.B.Sorokin, A.A.Artyukh, Uspekhi Khimii, 83, 251 (2014). https://doi.org/10.1070/RC2014v083n03ABEH004367

9. D.Berman, A.Erdemir, A.Sumant, Mater. Today, 17, 31 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

10. P.Blake, P.D.Brimicombe, R.R.Nair et al., Nano Lett., 8, 1704 (2008). https://doi.org/10.1021/nl080649i

11. H.J.Salavagione, G.Martinez, G.Ellis, Physics and Application of Graphene - Experiments, ed. by Dr.Sergey Mikhailov, InTech (2011).

12. Fu.Xubing, Y.Chenguang, Y.Guisheng, RSC Advances, 76, 61688 (2015). https://doi.org/10.1039/C5RA09312K

13. P.S.Krilov, A.S.Berestennikov, A.N.Aleschin et al., Fiz. Tverd. Tela, 57, 1639 (2015).

14. V.E.Muradyan, E.A.Sokolov, N.P.Piven' et al., Pisma v Zhurn. Teor. Fiz., 36, 106 (2010). https://doi.org/10.1134/S1063785010120151

15. GRAFEN(r)-iGP/Industrial Graphene Nano-platelets for General Purposes.- [Electronic resource]/Access mode: www.grafen.com.tr/products.php.

16. B.F.Malichenko, A.N.Tsipina, Vysokomol. Soed., B11, 361 (1979).

17. M.J.Frisch, G.W.Trucks, H.B Schlegel et al., GAUSSIAN03 Revision B.05, Pittsburgh, PA (2003).

18. V.N.Tsvetkov, Rigid Chain Polymer Molecules, Nauka, Leningrad (1986) [in Russian].

19. B.I.Schapiro, Uspehi Khimii, 75, 484 (2006)

.

Current number: