Funct. Mater. 2019; 26 (1): 127-130.

doi:https://doi.org/10.15407/fm26.01.127

Advanced method of scintillator energy resolution test

A.V.Gektin, V.S.Suzdal, A.Yu.Boyarintsev, A.V.Sobolev

Institute for Scintillation Materials, STC &qout;Institute for Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

This work is devoted to the development of advanced method of scintillator energy resolution test. Separation of scintillation photons for different groups in accordance with statistical methods allows to extract some groups of photons that give better resolution values comparing to conventional approach. It is shown that new method could be useful for analysis of scintillation uniformity of detector.

Keywords: 
scintillator, energy resolution, clusterization.
References: 

1. R.Hofstadter, Phys. Rev., 74, 100 (1948). https://doi.org/10.1103/PhysRev.74.100

2. P.Dorenbos, J.T.M.De Haas, C.W.E.Van Eijk, IEEE Trans. Nucl. Sci., 42, 2190 (1995). https://doi.org/10.1109/23.489415

3. P.Lecoq, A.Gektin, M.Korzhik, Inorganic Scintillators for Detector Systems. Physical Principles and Crystal Engineering, Handbook, 2nd Edition, Springer, New York (2017), https://doi.org/10.1007/978-3-319-45522-8

4. M.Nikl, A.Yoshikawa, Adv. Opt. Mater., 3, 463 (2015). DOI: 10.1002/adom.201400571 https://doi.org/10.1002/adom.201400571

5. S.E.Derenzo, M.S.Boswell, E.Bourret-Courchesne et al., IEEE Trans. Nucl. Sci., 55, 1458 (2008). https://doi.org/10.1109/TNS.2008.921932

6. K.Yang, P.Menge, J. Appl. Phys., 118, 213106 (2015). https://doi.org/10.1063/1.4937126

7. V.Khodyuk, S.A.Messina, T.J.Hayden et al., J. Appl. Physics, 118, 084901 (2015). https://doi.org/10.1063/1.4928771

8. M.Moszynski, Nucl. Instr. Meth. Phys. Res. A, A505, 101 (2003). https://doi.org/10.1016/S0168-9002(03)01030-1

9. M.Moszynski, J.Zalipska, M.Balcerzyk et al., Nucl. Instr. Meth. Phys. Res. A, A484, 259 (2002). https://doi.org/10.1016/S0168-9002(01)01964-7

10. M.Moszynski, Proc. SPIE, 5922 (2005).

11. A.V.Gektin, A.N.Vasil'ev, Functional Materials, 24, 621(2017). https://doi.org/10.15407/fm24.04.621

12. S.Gridin, D.R.Onken, R.T.Williams et al., J. Appl. Phys., 124, 154504 (2018). https://doi.org/10.1063/1.5048034

13. A.Gektin, A.Vasil'ev, Rad. Meas., 122, 108 (2019). https://doi.org/10.1016/j.radmeas.2019.02.004

14. A.Gektin, A.Vasil'ev, Abstr. Int. Conf. Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR'2018), Prague, Czech Republic (2018), p.221.

15. K.A.Parsaye, J. Data Warehousing, 1 (1998).

16. J.Lee, S.Kim, G.Lebanon et al., J. Machine Learn. Res., 17, 1 (2016).

17. M.S.Aldenderfer, R.K.Blashfield, Cluster Analysis, Sage Publications, Los Angeles (1984). https://doi.org/10.4135/9781412983648

18. L.Rokach, O.Maimon, Clustering Methods, Data Mining and Knowledge Discovery Handbook, Springer, US (2005),

19. J.Abonyi, B.Feil, Cluster Analysis for Data Mining and System Identification, Boston, MA: Birkhauser, Basel (2007).

20. B.S.Everitt, S.Landau, M.Leese, Cluster Analysis, 4th ed., Arnold, London (2001).

21. K.Jajuga, A.Sokolowski, H.Bock, Classification, Clustering and Data Analysis, Springer New York, (2002). https://doi.org/10.1007/978-3-642-56181-8

22. V.P.Sergeev, Bull. Comput. Inform. Technol., 6, 3 (2010)

.

Current number: