Funct. Mater. 2019; 26 (2): 302-309.

doi:https://doi.org/10.15407/fm26.02.302

Optical properties of thin copper sulphide films obtained by thermal evaporation

T.V.Semikina1,2, S.V.Mamykin1, L.N.Shmyreva2

1V.Lashkaryov Institute of Physics of Semiconductors, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
2I.Sikorsky National Technical University of Ukraine KPI, 33 Prospect Peremogy, 03056 Kyiv, Ukraine

Abstract: 

Thin copper sulphide films were grown on glass substrates by explosive thermal evaporation method. X-ray diffraction measurements show amorphous structure of the films. The thicknesses of grown films (13 - 84 nm), energy of optical direct (2.25 eV - 2.74 eV) and indirect (0.55 eV - 1.60 eV) transitions were obtained using Tauc plot from the measurements of optical transmission and reflection spectra. The dependences of optical band gap Eg on the film thickness, copper content and ambient temperature during deposition have been studied. The observed nonmonotonic dependences of Eg are analyzed from the point of view of influence of the Burstein-Moss effect and the structural rearrangement of growing films. The influences of the ambient temperature, copper to sulfur ratio on the structural and optical properties are analyzed.

Keywords: 
thin films of copper sulphide, transmission spectra, energy of direct and indirect transitions.
References: 

1. Kasturi Lal Chopra, Suhit Radgan Das, Thin Film Solar Cells, Plenum Press, New York (1983).

2. M.A.Green, K.Emery, Y.Hishikawa et al., Prog. Photovolt. Res. Appl., 25, 3 (2017). https://doi.org/10.1002/pip.2855

3. M.S.Shinde, P.B.Ahirrao, I.J.Patil et al., Indian J. Pure & Appl. Phys., 50, 657 (2012).

4. M.Ramaya, S.Ganesan, Iranian J. Mater. Sci. & Engin., 8, 34 (2011).

5. M.Saadeldin, H.S.Soliman, H.A.M.Ali et al., Chin. Phys. B, 23, 046803 (2014). https://doi.org/10.1088/1674-1056/23/4/046803

6. M.Ramya, S.Ganesan, IJST, 37A3, 293 (2013).

7. M.B.Muradov, G.M.Eyvazova, N.G.Darvishov et al., Trans., Ser. Phys. Math. Sci., 24, 145 (2004). https://doi.org/10.5144/0256-4947.2004.145

8. M.B.Muradov, G.M.Eyvazova, Ya.M.Elchiev, Prikladnaya Fizika, 5, 94 (2010).

9. H.Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons Ltd., England (2007).

10. Sadao Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, Wiley Series in Materials for Electronic and Optoelectronic Applications, John Wiley & Sons Ltd., England (2005). https://doi.org/10.1002/0470090340

11. J.I.Pankove. Optical Processes in Semiconductors, Prentice-Hall, Inc., Englewood Cliffs, New Jersy (1971).

12. R.A.Smith, Semiconductors, Cambridge University Press, Cambridge London-New York-Mellburne (1978).

13. FuweiZhuge, Xiaomin Li, Xiangdong Gao, Xiaoyan Gan et al., Mater. Lett., 63, 652 (2009). https://doi.org/10.1016/j.matlet.2008.12.010

14. T.Moss, Optical Properties of Semiconductors, Butterworth's Scientific Publication, LTD, London (1959).

15. Luminita Isac, Ionut Popovici, Alexandru Enesca et al., Energy Procedia, 2, 71 (2010). https://doi.org/10.1016/j.egypro.2010.07.013

16. Yu.N.Bobrenko, S.Yu.Pavelets, T.V.Semikina et al., Semicond. Phys., Quant. Electron. Optoelectron., 18, 101 (2015). https://doi.org/10.15407/spqeo18.01.101

17. T.V.Semikina, S.V.Mamykin, M.Godlewski et al., Semicond. Phys., Quant. Electron. Optoelectron., 16, 111 (2013). https://doi.org/10.15407/spqeo16.02.111

18. Yu.N.Bobrenko, S.Yu.Pavelets, A.M.Pavelets et al., Semiconductors, 49, 519 (2015). https://doi.org/10.1134/S1063782615040089

19. T.V.Semikina, S.V.Mamykin, G.I.Sheremet et al., Ukr. J. Phys., 61, 732 (2016). https://doi.org/10.15407/ujpe61.08.0732

20. T.V.Semikina, Ukr. J. Phys., 63, 156 (2018). https://doi.org/10.15407/ujpe63.2.156

21. H.M.Pathan, J.D.Desai, C.D.Lokhande, Appl. Surf. Sci., 202, 47 (2002). https://doi.org/10.1016/S0169-4332(02)00843-7

22. M.Ramaya, S.Ganesan, Iranian J. Sci. Techn., 37A3, 293 (2013).

.

Current number: