Funct. Mater. 2019; 26 (2): 403-411.

doi:https://doi.org/10.15407/fm26.02.403

Epoxy composite modifications influence on the energy activation's of thermal destruction

A.V.Buketov, S.A.Smetankin, A.V.Akimov, A.G.Kulinich

Department of Transport Technologies, Kherson State Maritime Academy, 73000 Kherson, Ukraine

Abstract: 

Values of the activation energy of the thermal-oxidative breakdown (E) of modified epoxy composite materials were calculated based on thermogravimetric analysis and using the Broido method. It is established that the composites with the SFEK modifier in an amount of q = 0.10 pts·wt. are characterized by the highest values of activation energy (E = 144.5 kJ/mol) and composites with the modifier in an amount of q = 1.75 pts·wt. are characterized by the activation energy which is equal to E = 175.0 kJ/mol. This indicates a significant effect of the modifier on the epoxy composites activation energy. The results of the experiments point to the formation of relatively thermally stable intra- and intermolecular bonds, which proves the compaction of the macromolecule cross-linking in the epoxy composites. The latter, in turn, leads to an increase of thermal stability and, as a consequence, the durability of materials.

Keywords: 
activation energy, thermogravimetry, Broido method, modifier, epoxy composite, properties.
References: 

1. A.V.Buketov, O.O.Sapronov, M.V.Brailo et al., Mater Sci., 49, 696 (2014). https://doi.org/10.1007/s11003-014-9664-0

2. O.O.Sapronov, A.V.Buketov, et al., Comp. Mech., 8, 47 (2017). https://doi.org/10.1615/CompMechComputApplIntJ.v8.i1

3. A.Buketov, P.Maruschak, O.Sapronov et al., Transport, 31, 333 (2016). https://doi.org/ 10.3846/16484142.2016.1212267

4. A.V.Buketov, V.O.Skyrdenko, Mater Sci., 51, 44 (2015). https://doi.org/10.1007/s11003-015-9808-x

5. C.D.Doyle, Anal. Chem., 33, 77 (1961). https://doi.orq/10.1021/ac60169a022

6. I.Y.Elbyli, S.Piskin, Procedia Engineering, 51, 727 (2013). https://doi.org/10.1016/ j.proeng.2013.01.104

7. H.Barkia, L.Belkbir, S.A.A.Jayaweera, J. Therm. Anal. Calorim., 86, 121 (2006). https://doi.org/10.1007/s10973-006-7576-4

8. R.Jalil, J.R.Nixon, Drug. Dev. Ind. Pharm., 16, 2257 (2008). https://doi.10.3109/03639049009043798

9. V.R.Patel, R.N.Patel, V.J.Rao, 51, 727 (2013). https://doi.org/10.1016/j.proeng. 2013.01.104

10. A.Broido, J. Polym. Sci.-Part A, 7, 1761 (1969). https://doi.org/10.1002/pol.1969. 160071012

11. S.Ma, J.O.Hill, S.J.Heng, J. Therm. Anal., 35, 977 (1989). https://doi.org/10.1007/BF02057254

Current number: