Funct. Mater. 2019; 26 (2): 412-418.

doi:https://doi.org/10.15407/fm26.02.412

Chemical-mechanical polishing of CdTe, ZnxCd1-xTe and CdxHg1-xTe single crystal surfaces by K2Cr2O7-HBr-solvent etchants

M.V.Chayka1,2, Z.F.Tomashyk2, V.M.Tomashyk2, G.P.Malanych2, A.A.Korchovyi2

1Zhytomyr Franko State University, 40 Velyka Berdychivska Str., 10008 Zhytomyr, Ukraine
2V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

Chemical-mechanical polishing (CMP) of the CdTe single crystals and ZnxCd1-xTe, CdxHg1-xTe solid solutions surfaces by bromine-emerging etching compositions based on aqueous solutions of K2Cr2O7-HBr-C4H6O6 and K2Cr2O7-HBr-ethylene glycol has been investigated for the first time. The dependences of the chemical-mechanical polishing rate on the dilution of the base polishing etchant for tartaric acid, ethylene glycol and glycerol have been established. The effect of the nature of the viscous organic solvent on the polishing rate and the quality of the polished surface of the single crystals has been determined. The surface condition after CMP has been investigated using metallographic analysis and atomic force microscopy. The polishing etchant compositions and conditions of conducting the process of CMP for forming a high-quality polished surface of CdTe, ZnxCd1-xTe and CdxHg1-xTe single crystals have been optimized.

Keywords: 
chemical-mechanical polishing, cadmium telluride, solid solutions, etchant, single crystal, dissolution rate.
References: 

1. Y.Eisen, A.Shor, J. Cryst. Growth, 184, 1302 (1998). https://doi.org/10.1016/S0022-0248(97)00808-7

2. T.E.Schlesinger, J.E.Toney, H.Yoon et al., Mater. Sci. Eng., 32, 103 (2001). https://doi.org/10.1016/S0927-796X(01)00027-4

3. Y.Cui, M.Groza, A.Burger, R.B.James, IEEE Trans. Nucl. Sci., 51, 1172 (2004). https://doi.org/10.1109/TNS.2004.829654

4. M.R.Oliver, Chemical-mechanical Planarization of Semiconductor Materials, Springer, Berlin-Heidelberg(2004). https://doi.org/10.1007/978-3-662-06234-0

5. V.M.Tomashik, Z.F.Tomashik, Inorg. Mater., 30, 1501 (1994).

6. Z.F.Tomashik, V.M.Tomashik, I.B.Stratiychuk et al., J. Electron. Mater., 38, 1642 (2009). https://doi.org/10.1007/s11664-009-0692-8

7. S.G.Dremlyuzhenko, Nauk. Visn. Chernivtsi Nats. Univ. Khim., 473, 50 (2009).

8. A.L.Belogorokhov, L.I.Belogorokhova, A.G.Belov et al., Fiz. Tekhn. Polupr., 33, 549 (1999) https://doi.org/10.1134/1.1187890

9. J.J.Reinoso, E.I.Ko, P.J.Sides, J. Cryst. Growth, 174, 715 (1997). https://doi.org/10.1016/S0022-0248(97)00060-2

10. P.M.Amirtharaj, F.N.Pollak, Appl. Phys. Lett., 45, 790 (1984). https://doi.org/10.1063/1.95367

11. M.V.Chayka, R.O.Denysyuk, Z.F.Tomashyk et al., Vopr. Khim. Khim. Tekhnol., 1, 55 (2018).

12. H.M.Okrepka, Z.F.Tomashik, V.M.Tomashik et al., Phys. Chem. Solid State, 9, 857 (2008).

13. I.I.Hnativ, Z.F.Tomashik, V.M.Tomashik et al., Phys. Chem. Solid State, 6, 620 (2005).

14. S.S.Pop, I.S.Sharodi, Physical Electronics, Yevrosvit, Lviv (2001) [in Ukrainian]

.

Current number: