Funct. Mater. 2019; 26 (3): 472-476.

doi:https://doi.org/10.15407/fm26.03.472

The spectral properties of (N(CH3)4)2MnCl4 crystal

A.I.Kashuba1,2, I.M.Kunyo1, T.S.Malyi3, H.A.Ilchuk2, R.Yu.Petrus2, I.V.Semkiv2, I.V.Karpa1, M.V.Fedula4, E.O.Zmiiovska2

1Electronics and Computer Technologies Department, I.Franko National University of Lviv, 107 Tarnavsky Str., 79005 Lviv, Ukraine
2General Physics Department, Lviv Polytechnic National University, 12 Bandera Str., 79646 Lviv, Ukraine
3Physics Department, I.Franko National University of Lviv, 8a Kyrylo and Mefodiy Str., 79005 Lviv, Ukraine
4Department of Radioelectronic Devices and Telecommunications, Khmelnytskiy National University, 11 Institute Str., 29016 Khmelnytskiy, Ukraine

Abstract: 

We report on the results of the X-ray diffraction study of (N(CH3)4)2MnCl4 crystals. The structure data are obtained by the Rietveld method. The (N(CH3)4)2MnCl4 compound is crystallized in a monoclinic lattice with the space group of P21/c (14). The results of the infrared spectroscopy of (N(CH3)4)2MnCl4 crystals are presented at 270 K. Photoluminescence emission spectra are studied for (N(CH3)4)2MnCl4. A broad band located approximately at 520 nm and its nature is discussed. Photoluminescence excitation spectra are measured for the band located at 520 nm and their parameters are evaluated.

Keywords: 
crystal structure, infrared spectroscopy, vibration spectra, photoluminescence, emission spectra.
References: 

1. M.Ya.Rudysh, A.I.Kashuba, V.Yo.Stadnyk et al., J. Appl. Spectrosc., 85, 1022 (2019). https://doi.org/10.1007/s10812-019-00754-z

2. I.M.Kunyo, A.I.Kashuba, I.V.Karpa et al., J. Phys. Stud., 22, 3301 (2018). https://doi.org/10.30970/jps.22.3301

3. Ae Ran Lim, Solid State Commun., 242, 25 (2016). https://doi.org/10.1016/j.ssc.2016.05.009

4. S.A.Sveleba, I.V.Karpa, I.M.Kunyo et al., Crystallogr. Rep., 55, 652 (2010). https://doi.org/10.1134/S106377451004019X

5. S.Sveleba, I.Katerynchuk, I.Kunyo et al., Ukr. J. Phys., 53, 1098 (2008).

6. I.V.Karpa, S.A.Sveleba, I.M.Kunyo et al., Crystallogr. Rep., 55, 815 (2010). https://doi.org/10.1134/S1063774510050172

7. S.A.Sveleba, I.V.Karpa, I.M.Katerynchuk et al., Crystallogr. Rep., 59, 229 (2014). https://doi.org/10.1134/S1063774514020266

8. I.B.Olenych, L.S.Monastyrskii, S.A.Sveleba et al., J. Nano-Electron. Phys., 10, 01015 (2018). https://doi.org/10.21272/jnep.10(1).01015

9. M.Ben Bechir, K.Karoui, M.Tabellout et al., J. Appl. Phys., 115, 153708 (2014). https://doi.org/10.1063/1.4871662

10. N.Mashiyama, N.Koshiji, Acta Crystallogr. B, 45, 467 (1989). https://doi.org/10.1107/S0108768189006981

11. STOE & Cie GmbH, WinXPOW 3.03, Powder Diffraction Software Package, Darmstadt, Germany (2010).

12. SRM 640b: Silicon Powder 2θ/d-Spacing Standard for X-ray Diffraction, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg (MD) 1987.

13. SRM 676: Alumina Internal Standard for Quantitative Analysis by X-ray Powder Diffraction, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg (MD) (2005).

14. A.Altomare, G.Campi, C.Cuocci et al., J. Appl. Crystallogr., 42, 768 (2009). https://doi.org/10.1107/S0021889809025503

15. The Rietveld Method, IUCr Monographs on Crystallography, vol. 5, ed. by R.A.Young, Oxford University Press, New York (1993).

16. J.Rodriguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter, 26, 12 (2001).

17. T.Roisnel, J.Rodriguez-Carvajal, Mater. Sci. Forum, 378-381, 118 (2001). https://doi.org/10.4028/www.scientific.net/MSF.378-381.118

18. L.M.Gelato, E.Parthe, J. Appl. Crystallogr., 20, 139 (1987). https://doi.org/10.1107/S0021889887086965

19. A.I.Kashuba, M.V.Solovyov, T.S.Maliy et al., J. Phys. Stud., 22, 2701 (2018). https://doi.org/10.30970/jps.22.2701

20. A.I.Kashuba, T.S.Malyi, M.V.Solovyov et al., Opt. Spectrosc., 125, 853 (2018). https://doi.org/10.1134/S0030400X18120081

21. K.Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th Ed, Wiley, New York (1992).

22. A.D.Kirkwood, K.D.Bier, J.K.Thompson et al., J. Phys. Chem., 95, 2644 (1991). https://doi.org/10.1021/j100160a006

23. F.Hlel, A.Ben Rhaeim, K.Guidara, Zh. Neorgan. Khimii, 53, 785 (2008).

24. Q.Zhou, L.Dolgov, A.M.Srivastava et al., J. Mater. Chem. C, 6, 2652 (2018). https://doi.org/10.1039/C8TC00251G

25. Y.Rodriguez-Lazcano, L.Nataf, F.Rodriguez, Phys. Rev., 80, 085115 (2009). https://doi.org/10.1103/PhysRevB.80.085115

26. F.H.Su, Z.L.Fang, B.S.Ma et al., J. Phys. Chem. B, 107, 6991 (2003). https://doi.org/10.1021/jp0278566

27. J.S.Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge, England (1980).

28. S.Sugano, Y.Tanabe, H.Kamimura, Multiplets of Transition-Metal Ions, Academic Press, New York (1970)

.

Current number: