Funct. Mater. 2019; 26 (3): 477-483.

doi:https://doi.org/10.15407/fm26.03.477

Effect of irradiation with fast electrons on the anisotropy of the magnetoresistance in YBa2Cu3O7-δ single crystals

V.I.Beletskyi, G.Ya.Khadzhai, N.R.Vovk, Yu.V.Litvinov, V.V.Sklyar, I.L.Goulatis

V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

In this work, we investigated the influence of the misorientation angle between the direction of the constant magnetic field H = 15 kOe and the direction of the basal ab-plane on the temperature dependences of the excess conductivity in the region of transitions to the superconducting state of YBa2Cu3O7-δ single crystals irradiated with fast electrons at T << 10 (energy 0.5-2.5 MeV, dose 1018 cm-2). It was determined that at temperatures T >> Tc, the temperature dependences of the excess paraconductivity are interpreted within the framework of the Aslamazov-Larkin theoretical model of the fluctuation conductivity for layered superconducting systems. The reasons for the appearance of low-temperature "tails" (paracoherent transitions) on resistive transitions corresponding to different phase regimes of the vortex matter are discussed.

Keywords: 
excess conductivity, YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-&delta;</sub> single crystals, electron irradiation, 2D-3D crossover, &quot;intrinsic&quot; pinning.
References: 

1. O.V.Dobrovolskiy, M.Huth, V.A.Shklovskij, R.V.Vovk, Sci. Rep., 7, Article number: 13740 (2017). DOI:10.1038/s41598-017-14232-z. https://doi.org/10.1038/s41598-017-14232-z

2. O.V.Dobrovolskiy, R.Sachser, M.Huth et al., Appl. Phys. Lett., 112, 152601-1-5 (2018). https://doi.org/10.1063/1.5028213

3. J.M.Valles Jr., A.E.White, K.T.Short et al., Phys. Rev. B, 39, 11599 (1989). https://doi.org/10.1103/PhysRevB.39.11599

4. T.Siegrist, S.Sunshince, D.W.Murphy et al., Phys. Rev. B, 35, 7137 (1987). https://doi.org/10.1103/PhysRevB.35.7137

5. D.D.Balla, A.V.Bondarenko, R.V.Vovk et al., Low Temp. Phys., 23, 777 (1997). https://doi.org/10.1063/1.593445

6. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Mod. Phys, Lett. B, 24, 2295 (2010), DOI:10.1142/S0217984910024675. https://doi.org/10.1142/S0217984910024675

7. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6

8. G.Ya.Khadzhai, R.V.Vovk, N.R.Vovk et al., Mod. Phys. Lett. B, 32, 1750367 (2018), DOI:10.1142/S0217984917503675. https://doi.org/10.1142/S0217984917503675

9. B.Martinez, F.Sandiumenge, S.Pinol et al., Appl. Phys. Lett., 66, 772 (1995). https://doi.org/10.1063/1.114089

10. D.A.Lotnyk, R.V.Vovk, M.A.Obolenskii et al., J. Low Temp. Phys., 161, 387 (2010). DOI 10.1007/s10909-010-0198-z. https://doi.org/10.1007/s10909-010-0198-z

11. B.C.Bunker, J.A.Voight, D.H.Doughty et al., in: High Temperature Superconducting Materials: Preparation, Property and Processing, ed. by W.E.Hatfield and J.H.Miller Jr, Marcel Dekker, New York (1988).

12. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

13. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B-Solid St., 72, 155105 (2005). https://doi.org/10.1103/PhysRevB.72.155105

14. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Solid State Commun., 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008

15. T.A.Friedmann, J.P.Rice, J.Giapintzakis, D.M.Ginsberg, Phys. Rev. B-Solid St,, 39, 4258 (1989). https://doi.org/10.1103/PhysRevB.39.4258

16. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci-Mater. El., 18, 811 (2007). https://doi.org/10.1007/s10854-006-9086-3

17. P.W.Anderson, Z.Zou, Phys. Rev. Lett., 60, 132 (1988). https://doi.org/10.1103/PhysRevLett.60.132

18. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A-Mater., 117, 997 (2014). DOI:10.1007/s00339-014-8670-2. https://doi.org/10.1007/s00339-014-8670-2

19. K.Widdera, D.Bernera, H.P.Geserich et al., Physica C, 251, 274 (1995). https://doi.org/10.1016/0921-4534(95)00423-8

20. R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis et al., Mod. Phys. Lett. B, 27, 1350029 (2013). https://doi.org/10.1142/S0217984913500292

21. R.V.Vovk, A.L.Solovyov, Low Temp. Phys., 44, 81 (2018). https://doi.org/10.1063/ 1.5020905. https://doi.org/10.1063/1.5020905

22. A.L.Solovyov, L.V.Omelchenko, V.B.Stepanov et al., Phys. Rev. B-Solid St., 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505

23. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 190, 18 (2014). http://dx.doi.org/10.1016/j.ssc.2014.04.004. https://doi.org/10.1016/j.ssc.2014.04.004

24. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci-Mater. El., 25, 5226 (2014). DOI:10.1007/s10854-014-2292-5. https://doi.org/10.1007/s10854-014-2292-5

25. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci-Mater. El., 26, 1435 (2015). DOI:10.1007/s10854-014-2558-y. https://doi.org/10.1007/s10854-014-2558-y

26. N.A.Azarenkov, V.N.Voevodin, R.V.Vovk et al., J. Mater. Sci-Mater. El., 28, 15886 (2017). DOI:10.1007/s10854-017-7483-4. https://doi.org/10.1007/s10854-017-7483-4

27. A.V.Bondarenko, A.A.Prodan, Y.T.Petrusenko et al., Phys. Rev. B-Solid St,, 64, 092513 (2001). DOI:10.1103/PhysRevB.64.092513. https://doi.org/10.1103/PhysRevB.64.092513

28. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Physica C, 516, 58 (2015). DOI:10.1016/j.physc.2015.06.011. https://doi.org/10.1016/j.physc.2015.06.011

29. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al.,Physica B, 493, 58 (2016). https://doi.org/10.1016/j.physb.2016.04.015

30. W.K.Kwok, S.Fleshler, U.Welp et al., Phys. Rev. Lett., 69, 3370 (1992). https://doi.org/10.1103/PhysRevLett.69.3370

31. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Mod. Phys. Lett. B, 25, 2131 (2011). https://doi.org/10.1142/S0217984911027327

32. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., J. Alloy Compd., 509, 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102

33. R.M.Costa, I.C.Riegel, A.R.Jurelo, J.L.Pimentel Jr., J. Magn. Magn. Mat., 320, 493 (2008). https://doi.org/10.1016/j.jmmm.2008.02.093

34. J.S.Kouvel, M.E.Fischer, Phys. Rev,, 136, 1616 (1964). https://doi.org/10.1103/PhysRev.136.A1626

35. L.G.Aslamasov, A.I.Larkin, Phys, Lett. A, 26, 238 (1968). https://doi.org/10.1016/0375-9601(68)90623-3

36. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001). https://doi.org/10.1063/1.1374717

37. A.V.Bondarenko, V.A.Shklovskij, M.A.Obolenskii et al., Phys. Rev. B-Solid St, 58, 2445 (1998). https://doi.org/10.1103/PhysRevB.58.2445

38. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. Lett., 91, 2353021 (2003). https://doi.org/10.1103/PhysRevLett.91.235302

39. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Curr. Appl. Phys., 16, 931 (2016). https://doi.org/10.1016/j.cap.2016.05.014

40. O.V.Dobrovolskiy, R.Sachser, V.M.Bevz et al., Phys. Status Solidi-R (Rapid Research Letters), 1800223 (1-5) (2018). DOI:10.1002/pssr.201800223. https://doi.org/10.1002/pssr.201800223

41. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Curr. Appl. Phys., 14, 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002

42. O.V.Dobrovolskiy, V.V.Sosedkin, R.Sachser et al., J. Supercond. Nov. Magn., 30, 735 (2017). DOI:10.1007/s10948-016-3642-8. https://doi.org/10.1007/s10948-016-3642-8

43. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloy Compd., 485, 121 (2009)

.

Current number: