Funct. Mater. 2019; 26 (3): 489-494.

doi:https://doi.org/10.15407/fm26.03.489

Properties of Cu/Cu2O core-shell nanoparticles produced by spark erosion

A.V.Gilchuk1, A.O.Perekos2, Yu.Yu.Bacherikov3, A.G.Zhuk3, I.P.Vorona3, V.R.Romanyuk3, Yu.M.Romanenko1

1National Technical University of Ukraine "I.Sikorsky Kyiv Polytechnic Institute", 37 Prosp. Peremogy, 03506 Kyiv, Ukraine
2G.Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Academician Vernadsky Blvd, 03142 Kyiv, Ukraine
3V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Prosp. Nauky, 03028 Kyiv, Ukraine

Abstract: 

A simple and cheap spark erosion method was used to produce Cu/Cu2O core-shell nanoparticles. Morphological and structural studies of the obtained material showed that it consists of Cu and Cu/Cu2O core-shell nanoparticles with sizes about 9-25 and 30-50 nm, respectively. The latter demonstrate ferromagnetic properties (specific saturation magnetization is 0.27 A·m2/kg) without additional heat treatment in oxidizing environment. The causes of the ferromagnetic properties of the material obtained are analyzed.

Keywords: 
nanocomposite materials, core-shell nanoparticles, copper, copper oxide, spark erosion.
References: 

1. T.Ghodselahi, M.A.Vesaghi, Physica B, 406, 2678 (2011). https://doi.org/10.1016/j.physb.2011.03.082

2. H.B.Li, X.Xie, W.Wang et al., APL Mater,, 1, 042106 (2013). https://doi.org/10.1063/1.4824037

3. A.L.Yang, Sh.P.Li, Y.J.Wang et al., Trans. Nonferrous Met. Soc. China, 25, 3643 (2015). https://doi.org/10.1016/S1003-6326(15)64005-5

4. E.Zlatnik, The J. Fundam. Medic. Biology. 4, 13 (2012).

5. P.N.Prasad, Nanophotonics, No.5. John Wiley and Sons, New York (2004).

6. J.J.Teo, Y.Chang, H.C.Zeng, Langmuir. 22, 7369 (2006). https://doi.org/10.1021/la060439q

7. S.Jang, C.Yoon, J.M.Lee et al., Molecules. 21, 1467 (2016). https://doi.org/10.3390/molecules21111467

8. S.B.Kalidindi, U.Sanyal, B.R.Jagirdar, Phys. Chem. Chem. Phys., 10, 5870 (2008). https://doi.org/10.1039/b805726e

9. Ai Zhihui, Lizhi Zhang, Shuncheng Lee et al., J. Phys. Chem. C, 113, 20896 (2009) https://doi.org/10.1021/jp9083647

10. A.J.Haes, W.P.Hall, L.Chang et al., Nano Lett., 4, 1029 (204). https://doi.org/10.1021/nl049670j

11. M.Dmitruk, S.Malynych, Ukr. J. Phys., 9, 3 (2014).

12. N.Murase, K.Kuraoka, T.Yazawa, Mol. Cryst. Liq. Cryst. A, 314, 273 (1998). https://doi.org/10.1080/10587259808042487

13. W.Zhou, Ch.Cheng, J.Liu et al., Adv. Funct. Mater., 21, 2439 (2011). https://doi.org/10.1002/adfm.201100088

14. J.Santillan, F.A.Videla, D.C.Schinca et al., in : Proc. oSPIE - Intern. Soc. Opt. Engin. Plasmonics: Metal. Nanostruc. Opt. Proper. X, 84572U (2012).

15. G.Monastyrsky, P.Ochin, A.Gilchuk et al., J. Nano Electron. Phys., 4, 01007-7 (2012).

16. P.Ochin, A.V.Gilchuk, G.E.Monastyrsky et al., Mater. Sci. Forum, 738, 451 (2013). https://doi.org/10.4028/www.scientific.net/MSF.738-739.451

17. G.E.Monastyrsky, A.V.Kotko, A.V.Gilchuk et al., Metallofizika i Noveishie Tekhnologii, 36, 1091 (2014). https://doi.org/10.15407/mfint.36.08.1091

18. A.Kohut, L.Ludvigsson, B.O.Meuller, Nanotechnol., 28, 475603 (2017). https://doi.org/10.1088/1361-6528/aa8f84

19. K.K.Namitokov, Electroerosion Phenomena, Energia, Moscow (1978) [in Russian].

20. A.Perekos, Metal Phys. Advanc. Techn.. 18, 25 (1996).

21. V.I.Iveronova, G.P.Revkevitch, Theory of X-ray Scattering, MSU, Moscow (1978) [in Russian].

22. Ya.S.Umansky, Yu.A.Skakov, A.N.Ivanov, L.N.Rastorguyev, Crystallography, X-ray Diffraction and Electron Microscopy, Metallurgia, Moscow (1982) [in Russian].

23. V.Cherepin, Experimental Technique in Physical Metallurgy, Technics, Kyiv (1968).

24. B.G.Livshits, V.S.Kraposhin, Ya.L.Linetskii, Physical Properties of Metals and Alloys, Metallurgy, Moscow (1980) [in Russian].

25. V.Chechernicov, Magnetic Measurements, MSU, Moscow (1963) [in Russian].

26. J.Jung, T.Kim, M.Song et al., J. Appl. Phys., 101, 093708 (2007). https://doi.org/10.1063/1.2724794

27. D.Y.Kim, C.W.Kim, J.H.Sohn et al., J. Phys. Chem. C, 119, 13350 (2015). https://doi.org/10.1021/acs.jpcc.5b02762

28. D.Gao, Z.Zhang, Q.Xu et al., Appl. Phys. Lett., 104, 022406 (2014). https://doi.org/10.1063/1.4861884

29. M.B.Mahajan, M.S.Pavan, P.A.Joy, Solid State Commun., 149, 2199 (2009). https://doi.org/10.1016/j.ssc.2009.09.013

30. Yu.Yu.Bacherikov, I.P.Vorona, A.A.Konchits, Functional Materials, 17, 158 (2010).

31. G.H.Chan, J.Zhao, E.M.Hicks et al., Nano Lett., 7, 1947 (2007). https://doi.org/10.1021/nl070648a

32. T.M.D.Dang, T.T.T.Le, E.Fribourg-Blanc et al., Adv. Nat. Sci.:Nanosci. Nanotechnol., 2. 025004 (2011). https://doi.org/10.1088/2043-6262/2/2/025004

22. Ya.S.Umansky, Yu.A.Skakov, A.N.Ivanov, L.N.Rastorguyev, Crystallography, X-ray Diffraction and Electron Microscopy, Metallurgia, Moscow (1982) [in Russian].

23. V.Cherepin, Experimental Technique in Physical Metallurgy, Technics, Kyiv (1968).

24. B.G.Livshits, V.S.Kraposhin, Ya.L.Linetskii, Physical Properties of Metals and Alloys, Metallurgy, Moscow (1980) [in Russian].

25. V.Chechernicov, Magnetic Measurements, MSU, Moscow (1963) [in Russian].

26. J.Jung, T.Kim, M.Song et al., J. Appl. Phys., 101, 093708 (2007). https://doi.org/10.1063/1.2724794

27. D.Y.Kim, C.W.Kim, J.H.Sohn et al., J. Phys. Chem. C, 119, 13350 (2015). https://doi.org/10.1021/acs.jpcc.5b02762

28. D.Gao, Z.Zhang, Q.Xu et al., Appl. Phys. Lett., 104, 022406 (2014). https://doi.org/10.1063/1.4861884

29. M.B.Mahajan, M.S.Pavan, P.A.Joy, Solid State Commun., 149, 2199 (2009). https://doi.org/10.1016/j.ssc.2009.09.013

30. Yu.Yu.Bacherikov, I.P.Vorona, A.A.Konchits, Functional Materials, 17, 158 (2010).

31. G.H.Chan, J.Zhao, E.M.Hicks et al., Nano Lett., 7, 1947 (2007). https://doi.org/10.1021/nl070648a

32. T.M.D.Dang, T.T.T.Le, E.Fribourg-Blanc et al., Adv. Nat. Sci.:Nanosci. Nanotechnol., 2. 025004 (2011). https://doi.org/10.1088/2043-6262/2/2/025004

.

Current number: