Funct. Mater. 2019; 26 (3): 609-614.

doi:https://doi.org/10.15407/fm26.03.609

Functional hybrid organo-inorganic composite materials of the incorporative type for the recovery of articular cartilage defects

S. Krivileva1, A. Rassokha1, A. Zakovorotniy1, V. Moiseev1, V. Zhukov2

1National Technical University "Kharkiv Polytechnic Institute", Kyrpichova Str., 2, Kharkiv, 61000, Ukraine
2Kharkiv National Medical University, Nauky av. 4, Kharkiv, 61000, Ukraine

Abstract: 

The concept of obtaining a functional hybrid organo-inorganic composite material of the incorporation type with a binder based on polyacrylic acid and a nanocrystalline filler of a frag- mentary structure has been developed. Ca3(PO4)2 particles contain two phases with a semicohe-rent boundary between them. Structuring of the composite takes place at five levels: in the volume of the polymer binder, in the interfacial layer and the polymer matrix adjacent to it, and in the outer and inner layers of the calcium phosphate filler. The effects of composition, structure, and the ratio of the initial components on the properties of the composite were studied. The use of the composite causes the growth of young tissue of the articular cartilage with the restoration of its structures.

Keywords: 
hybrid organo-inorganic composites, coherent boundary, incorporation type, structuring mechanism, chelate complex.
References: 

1. L.L.Hench, Sci., 295, 1014, (2002). https://doi.org/10.1126/science.1067404

2. D.Logeart-Avramoglou, F.Anagnoston, R.Bizios, H.Petite, J. Cell. Mol. Med., 9, 72 (2005). https://doi.org/10.1111/j.1582-4934.2005.tb00338.x

3. O.Sych, N.Pinchuk, A.Parkhomey et al., Functional Materials, 14, 430 (2007).

4. S.Krivileva S., O.Zakovorotnyi O., V.Moiseev, N.Ponomareva, O.Rassokha, O.Zinchenko, Functional Materials, 26, 347 (2019).

5. O.Otychenko, T.Babutina, O.Kuda et al., Functional Materials, 24, 577 (2017). https://doi.org/10.15407/fm24.04.577

6. A.Veresov, V.Pytliaev, Yr.Tretiakov, Russ. Chem. J., 48, 52 (2004). https://doi.org/10.1002/nadc.20040520118

7. S.Krivileva, A.Rassokha, Minerals and mountain breeds, Kharkiv, Point Publ., 2014, 124 p.

8. A.N.Vinchell, G.Vinchell. Optical properties of artificial minerals, Moscow: Wold Publ., 1980, 526 p.

9. Ya.Rabek, Experimental methods in the chemistry of polymers, in 2 parts. Per. from English Part 1. - Moscow: Wold Publ., 1983, 384 p.

10. State Standard of the USSR 14359-69. Plastics. Testing methods. General requirements of the methods of mechanical testing, Moskov: publishing house of standards, 1979, 19 p.

11. Krivileva S., Bulletin of NTU "KhPI", 9 (1285), (2018), p. 128-133.

12. S.Krivileva, Rassokha, A. Zakovorotnyi, M. Zinchenko, N.Bukatenko, V.Zhukov, Functional Materials, 25, 549 (2018). https://doi.org/10.15407/fm25.03.546

13. V.Shevchenko, M.Balmakov, Phys. Chem. Glass, 28, 631 (2002). https://doi.org/10.1023/A:1021779203455

14. S.Krivileva, V.Moiseev, Functional Materials, 25, 358 (2018) https://doi.org/10.15407/fm25.02.358

Current number: