Funct. Mater. 2019; 26 (4): 690-694.

doi:https://doi.org/10.15407/fm26.04.690

Cracking of composite scintillators after significant doses of irradiation

V.L.Cherginets1, N.Z.Galunov1,2, B.V.Grinyov1, N.L.Karavaeva1, A.V.Krech1, L.G.Levchuk3, V.F.Popov3

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3National Science Center "Kharkiv Institute of Physics and Technology", 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine

Abstract: 

The possible main causes of the cracking of composite scintillators during irradiation, i.e. the effect on the sample in the irradiation zone of temperature and the atmosphere (altered by radiochemical reactions) we identified and investigated. At a slow pace of irradiation ( 100-200 Mrad and 0.2 Mrad/h), exposure to aggressive components of the medium in the irradiation zone, namely, nitric acid and possible products of its radiolysis, becomes the main one. At a high irradiation rate (250-550 Mrad 1500 Mrad/h) a substantial heating of the sample occurs due to its absorption of a large amount of energy, which creates the main effect on the cracking of composite scintillators in this case.

Keywords: 
composite scintillators, radiation-resistant, high energy, cracking, radiation chemistry.
References: 

1. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Nucl. Inst. Meth. Phys. Res., A, 841, 124 (2017). https://doi.org/10.1016/j.nima.2016.10.034

2. N.Z.Galunov, T.E.Gorbacheva, B.V.Grinyov et al., Nucl. Inst. Meth. Phys. Res., A, 866, 104 (2017). https://doi.org/10.1016/j.nima.2017.06.008

3. N.Z.Galunov, Ia.V.Gerasymov, T.E.Gorbacheva et al., Probl. Atom. Sci. Techn., Ser.:Nucl. Phys. Invest., No.3, 35 (2017).

4. A.V.Krech, N.Z.Galunov, Ukr. J. Phys.., 62, 569 (2017). https://doi.org/10.15407/ujpe62.07.0569

5. A A.Mazunder, Fundamentals of Radiation Chemistry, Academic Press, San Diego, London, Boston, Ney York, Sydney, Tokyo, Toronto (1999).

6. T.E.Gorbacheva, Functional Materials, 21, 290 (2014). https://doi.org/10.15407/fm21.03.290

7. E.Davydov, I.Gaponova, G.Pariiskii et al., Chem. Chem. Technology, 4, 281 (2010).

8. E.N.Cherezova, N.A.Mukmeneva, V.P.Arkhireyev, Aging and Stabilization of Polymers. Part 1: Study Guide, Kazan: Kazan Publishing House, National Research Technological University (2012) [in Russian].

9. V.P.Arkhireyev, Aging and Stabilization of Polymers, Kazan. Gos. Tehnol. U-nt, Kazan (2002) [in Russian].

10. Radiation Chemistry of Macromolecules, Atomizdat, Moscow (1978) [in Russian].

11. F.A.Mahlis, Radiation Physics and Polymer Chemistry, Atomizdat, Moscow (1972) [in Russian]

.

Current number: