Funct. Mater. 2019; 26 (4): 703-709.

doi:https://doi.org/10.15407/fm26.04.703

Synthesis of ZnWO4:Eu3+ and ZnxMg1-xWO4:Eu3+ X-ray-excitable phosphor nanoparticles

I.A.Tupitsyna1,4, A.G.Yakubovskaya1,4, A.N.Puzan3, O.M.Vovk2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine
3SSI "Institute for Single Crystals", STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
4V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

ZnWO4:Eu3+ and ZnxMg1-xWO4:Eu3+ nanoparticles were obtained by the microwave-hydrothermal and the flux methods. The optimal conditions for obtaining nanocrystals with bright luminescence in the "red" spectral region are determined. The X-ray luminescence intensity of the 614 nm band for ZnWO4:Eu3+ and Zn0.685Mg0.285Eu0.03WO4 nanoparticles are 71 % and 108 %, respectively, versus the 500 nm intrinsic X-ray luminescence intensity of ZnWO4 single crystal. ZnWO4:Eu3+ and ZnxMg0.97-xEu0.03WO4 scintillation nanomaterials are promising for luminescent tomography for visualization of biological objects.

Keywords: 
tungstate nanocrystals, X-ray phosphor, luminescent tomography.
References: 

1. G.Pratx, C.M.Carpenter, C.Sun et al., Opt. Lett., 35, 3345 (2010). https://doi.org/10.1364/OL.35.003345

2. D.Chen, F.Meng, F.Zhao et al., BioMed Res. Intern., 1 (2016). https://doi.org/10.1155/2016/6450124

3. P.Gao, J.Rong, H.Pu et al., Opt. Express, 26, 23233 (2018). https://doi.org/10.1364/OE.26.023233

4. D.Chen, C.A.Dougherty, D.Yang et al., Tomography, 2, 3 (2016). https://doi.org/10.18383/j.tom.2016.00121

5. D.Chen, S.Zhu, X.Chen et al., Appl. Phys. Lett., 105, 191104 (2014) https://doi.org/10.1063/1.4901436

6. J.C.Larsson, C.Vogt, W.Vagberg et al., Phys. Med. Biol., 63, 164001 (2018) https://doi.org/10.1088/1361-6560/aad51e

7. R.Duncan, Y.-N.Sat, Ann. Oncol., 9, 39(1998). https://doi.org/10.1023/A:1008418325819

8. H.Maeda, J. Control Release, 164, 138 (2012). https://doi.org/10.1016/j.jconrel.2012.04.038

9. S.Stolik, J.A.Delgado, A.Perez et al., J. Photochem. Photobiol, B, 57, 90 (2000). https://doi.org/10.1016/S1011-1344(00)00082-8

10. L.Sudheendra, G.K.Das, C.Li et al., Chem. Mater., 26, 1881 (2014). https://doi.org/10.1021/cm404044n

11. S.Dufort, L.Sancey, C.Wenk et al., BBA Biomembranes, 1798, 2266 (2010). https://doi.org/10.1016/j.bbamem.2010.03.016

12. Y.Yang, Q.Shao, R.Deng et al., Angew. Chem., Int, Ed., 51, 3125 (2012). https://doi.org/10.1002/anie.201107919

13. L.Huo, J.Zhou, R.Wu et al., Opt. Mater. Express, 6, 1056 (2016). https://doi.org/10.1364/OME.6.001056

14. M.Alkahtani, Y.Chen, J.J. Pedraza et al., Opt.Express, 25, 1030 (2017). https://doi.org/10.1364/OE.25.001030

15. Z.Yi, W.Lu, C.Qian et al., Biomater. Sci., 2, 1404 (2014). https://doi.org/10.1039/C4BM00158C

16. M.Rahmani, T.Sedaghat, J. Inorg. Organomet. Polym., 29, 220 (2019). https://doi.org/10.1007/s10904-018-0981-x

17. Y.Wu, S.C.Zhang, L.W.Zhang et al., Chem. Res. Chin. Univ., 23, 465 (2007). https://doi.org/10.1016/S1005-9040(07)60100-7

18. S.J.Chen, J.H.Zhou, X.T.Chen et al., Chem. Phys. Lett., 375, 185 (2003). https://doi.org/10.1016/S0009-2614(03)00878-9

19. C.Di, S.Guozhen, T.Kaibin et al., Elsevier, v.8, 1783 (2003).

20. J.Bi, L.Wu, Z.Ding et al., J. Alloys Compd., 480, 684 (2009). https://doi.org/10.1016/j.jallcom.2009.02.029

21. J.Xiaohui, M.Junfeng, L.Jun et al., Elsevier, v.61, 4595 (2007).

22. M.Mai, C.Feldmann, J. Mater. Sci., 47, 1427 (2012). https://doi.org/10.1007/s10853-011-5923-8

23. V.S.Tinkova, A.G.Yakubovskaya, I.A.Tupitsyna et al., Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 1-2, 40 (2019).

24. A.Tupitsyna, P.O.Maksimchuk, A.G.Yakubovskaya et al., Functional Materials, 24, 16 (2017). https://doi.org/10.15407/fm24.01.016

25. D.Spassky, S.Omelkov, H.Magi et al., Opt. Mat., 36, 1660 (2014). https://doi.org/10.1016/j.optmat.2013.12.039

26. A.Yakubovskaya, I.Tupitsyna, D.Sofronov et al., Functional Materials, 20, 523 (2013). https://doi.org/10.15407/fm20.04.523

27. Q.Dai, H.Song, X.Bai et al., J. Phys, Chem, C, 111, 7586 (2007). https://doi.org/10.1021/jp066712e

28. I.A.Tupitsyna, P.O.Maksimchuk, A.G.Yakubovskaya et al., Functional Materials, 23, 535 (2016). https://doi.org/10.15407/fm23.04.357

Current number: