Funct. Mater. 2019; 26 (4): 744-747.

doi:https://doi.org/10.15407/fm26.04.744

Influence of Mn2+ ions on parameters of the I127 NQR spectrum of a mixed layered Pb1-xMnxI2 semiconductor

I.G.Vertegel, E.D.Chesnokov, O.I.Ovcharenko, A.P.Bukivskii, Yu.P.Gnatenko

Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

The concentration dependences of the parameters of the I127 NQR spectrum for Pb1-xMnxI2 mixed layered semiconductors have been investigated. It was shown that in the range of 0.00 ≤ x≤0.1, Mn2+ ions mainly replace Pb2+ ions in the crystalline layers. It is possible to form nanocluster domains in Pb1-xMnx2 crystals. It is shown that the nanocluster domain Pb1-xMnxI2 structure leads to the change of the NQR spin echo signals integral intensity. The decrease of the spin lattice relaxation time which has been revealed indicates the existence of the additional mechanism of the I127 NQR relaxation. This mechanism is connected with the dipole interaction of the Mn2+ ions with the nearest I127 nuclei.

Keywords: 
nuclear quadrupole resonance, layered semiconductors, nanoclusters.
References: 

1. Yu.P.Gnatenko, P.M.Bukivskij, Yu.P.Piryatinskii et al., J. Appl. Phys., 112, 093708 (2012). https://doi.org/10.1063/1.4764315

2. A.P.Bukivskii, Yu.P.Gnatenko, Yu.P.Piryatinskii et al., J. Luminescence, 185, 83 (2017). https://doi.org/10.1016/j.jlumin.2016.12.054

3. I.V.Blonsku, I.D.Nabytovych, Yu.O.Loon et al., Phys. Stat. Solidi (a), 174, 353 (1999). https://doi.org/10.1002/(SICI)1521-396X(199908)174:2<353::AID-PSSA353>3.0.CO;2-N

4. H.J.C.Van der Valk, P.Meerteuns, C.Haas, Phys. Stat. Solidi (b), 87, 135 (1978). https://doi.org/10.1002/pssb.2220870116

5. B.Dorner, R.E.Ghosh, G.Harbecke, Phys. Stat. Solidi (b), 78, 655 (1976). https://doi.org/10.1002/pssb.2220730234

6. R.S.Mitchell, Z. Kristallogr., 8, 372 (1969). https://doi.org/10.1088/0022-3735/2/4/419

7. F.V.Motsuyi, V.G.Dorogan, Z.D.Kovalyuk et al., Phys. Stat. Solidi (b), 242, 2427 (2005). https://doi.org/10.1002/pssb.200540086

8. F.V.Motsuyi, V.G.Dorogan, Z.D.Kovalyuk et al., Ukr. J. Phys., 51, 34 (2006).

9. A.I.Savchuk, I.D.Stolyarchuk, O.A.Savchuk, Semicond. Phys., Quant. Electr. Optoelectr., 17, 41 (2014).

10. V.G.Abramichvili, A.V.Komarov, Fiz. Tverd. Tela, 31, 68 (1989).

11. D.L.Lyfar, V.E.Goncharuk, S.M.Ryabchenko, Phys. Stat. Solidi. (b). 76, 183 (1976). https://doi.org/10.1002/pssb.2220760119

12. D.L.Lyfar, S.M.Ryabchenko, Sov. J. Low. Temp. Phys., 3, 1297 (1971).

13. K.G.Konopleva, N.U.Venskovskij, A.L.Tupoleva et al., Koordinacionnaya Khimiya, 23, 505 (1999). https://doi.org/10.1192/pb.23.8.505

14. D.L.Lyfar, S.M.Ryabchenko, Sov. J. Low. Temp. Phys., 5, 779 (1979).

15. M.S.Furyer, P.A.Skubenko, P.M.Bukivskij et al., J. Appl. Phys., 108, 103711-1 (2010). https://doi.org/10.1063/1.3512862

16. A.I.Barabash, I.G.Vertegel, E.D.Chesnokov et al., Russ. J. Phys. Chem. B, 9, 681 (2015). https://doi.org/10.1134/S1990793115050024

17. I.G.Vertegel, E.D.Chesnokov, A.I.Ovcharenko et al., Functional Materials, 24, 360 (2017). https://doi.org/10.15407/fm24.03.360

18. T.V.Furs, Migwusivskij Zbitnik, Naukovi Notatki, 50, 232 (2015).

19. G.K.Semin, T.A.Babushkina, G.G.Yakobson, Nuclear Quadrupole Resonance in Chemistry, Wiley, New Jork (1975).

20. A.R.Verma, P.Krishna, Polymorphism and Polytipism in Cristals, Wiley, New Jork (1966).

21. E.A.Turov, M.P.Petrov, Nuclear Magnetic Resonance in Ferro- and antiferromagnetics, Mir, Moskow, (1969) [in Russian]

22. G.N.Abelyashev, V.N.Berzhanskii, Yu.V.Fedotov, Zh. Exper. Teor. Fiz., 45, 43 (1987).

23. I.G.Vertegel, E.D.Chesnokov, I.I.Vertegel et al., Semicond. Phys., Quant. Electr. Optoelectr. 20, 340 (2017).

24. B.E.Vugmeister, M.D.Clinchuk, U.M.Zaritskii et al., Zh. Exper. Teor. Fiz., 42, 892 (1975)

.

Current number: