Funct. Mater. 2020; 27 (1): 100-106.

doi:https://doi.org/10.15407/fm27.01.100

Effect of the deposition temperature on the phase-structural state and hardness of ion-plasma coatings obtained on the basis of the quasi-binary WB2-TiB2 system

O.V.Sobol'1, Osman Dur2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychov Str., 61002 Kharkiv, Ukraine 2Hacettepe University Technopolis, Universiteler Mahallesi 1596, Cadde 6, F-Blok Kat:3 Beytepe, 06800 Ankara, Turkey

Abstract: 

Using the methods of X-ray diffractometry, scanning electron microscopy with elemental microanalysis and nanoindentation, the possibilities of structural engineering of ion-plasma coatings based on the quasibinary WB2-TiB2 system were studied. The possibility of forming three phase-structural states was established: an X-ray amorphous (nanocluster) state at a low substrate temperature during deposition at TS = 80°C; a single-phase crystalline state at TS = 300°C; and a two-phase nanocrystalline state at large TS. With the formation of a 2-phase state, the effect of nano-dispersing of crystallites was revealed. It is established that the highest hardness and elastic modulus are achieved in the coatings having a nanocrystalline structure with a texture. The highest hardness of 37.5 GPa was achieved in single-phase (W,Ti)B2 coatings obtained at TS = 300°C. Models are discussed to explain the observed effects.

Keywords: 
ion-plasma coatings, deposition temperature, phase-structural state, texture, hardness.
References: 
1. S.C.Tjong, H.Chen, Mater. Sci. Eng., 45, 1 (2004).
https://doi.org/10.1016/j.mser.2004.07.001
 
2. O.V.Sobol', A.A.Andreev, V.F.Gorban' et al., Techn. Phys. Lett. 38, 616 (2012).
https://doi.org/10.1134/S1063785012070127
 
3. O.V.Sobol', A.A.Meilekhov, Techn. Phys. Lett., 44, 63 (2018).
https://doi.org/10.1134/S1063785018010224
 
4. P.H.Mayrhofer, Ch.Mitterer, L.Hultman, H.Clemens, Prog. Mater. Sci., 51, 1032 (2006).
https://doi.org/10.1016/j.pmatsci.2006.02.002
 
5. T.F.Zhang, B.Gan, S.Park et al., Surf. Coat. Technol., 253, 115 (2014).
https://doi.org/10.1016/j.surfcoat.2014.05.023
 
6. H.Schmidt, G.Borchardt, C.Schmalzried et al., J. Appl. Phys., 93, 907 (2003).
https://doi.org/10.1063/1.1530715
 
7. H.J.Goldschmidt, Interstitial Alloys. Springer, London (1967).
https://doi.org/10.1007/978-1-4899-5880-8
 
8. K.A.Khor, L.G.Yu, G.Sundararajan, Thin Solid Films, 478, 232 (2005).
https://doi.org/10.1016/j.tsf.2004.07.004
 
9. Yu.P.Udalov, E.E.Valova, S.S.Ordanian, Ogneupory, 10, 12 (1995).
 
10. M.A.Janney, Amer. Ceram. Soc. Bull., 66, 322 (1987).
 
11. I.Ogawa, T.Yamamoto, J. Mater. Sci. Lett., 11, 296 (1992).
https://doi.org/10.1007/BF00729419
 
12. C.Schmalzried, R.Telle, B.Freitag, W.Mader, Z. Metallkd., 92, 1197 (2001).
 
13. H.Willmann, P.H.Mayrhofer, P.O.A.Persson et al., Scripta Mater, 54, 1847 (2006).
https://doi.org/10.1016/j.scriptamat.2006.02.023
 
14. O.V.Sobol', Phys. Solid State, 49, 1161 (2007).
https://doi.org/10.1134/S1063783407060236
 
15. O.V.Sobol, O.N.Grigoryev, Yu.A Kunitsky et al., Sci. Sinter., 38, 63 (2006).
https://doi.org/10.2298/SOS0601063S
 
16. O.V.Sobol, S.N.Dub, A.D.Pogrebnjak et al., Thin Solid Films, 662, 137 (2018).
https://doi.org/10.1016/j.tsf.2018.07.042
 
17. M.V.Reshetnyak, O.V.Sobol, Phys. Surf. Engin., 6, 180 (2008).
 
18. H.P.Klug, L.E.Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley and Sons, New York (1974),
 
19. H.Euchner, P.H.Mayrhofer, Thin Solid Films, 583, 46 (2015).
https://doi.org/10.1016/j.tsf.2015.03.035
 
20. N.A.Azarenkov, O.V.Sobol, A.D.Pogrebnyak, V.M.Beresnev, Engineering of Vacuum-plasma Coatings, V.Karazin Publishing House of KhNU, Kharkov, (2011).
 
21. A.Cavaleiro, B.Trindade, M.T.Vieira, Surf. Coat. Tech., 174-175, 68 (2003).
https://doi.org/10.1016/S0257-8972(03)00328-1
 
22. A.V.Kuchuk, V.P.Kladko, O.S.Lytvyn et al., Adv. Engin. Mater., 8, 209 (2006).
https://doi.org/10.1002/adem.200500263
 
 

Current number: