Funct. Mater. 2020; 27 (1): 147-158.

doi:https://doi.org/10.15407/fm27.01.147

Extended quasi-correlated orbitals with long-range effects: Application to organic single-molecule electronics

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The previously given quasi-correlated tight-binding (QCTB) π-electron scheme is generalized in a very simple way. We now include long-range electronic effects while retaining, to a certain extent, a tight-binding (TB) basis of the theory. The thus extended quasi-correlated (EQC) method is applied, along with QCTB and usual TB schemes, to compute and analyze Green's functions (GF) and related quantities needed for molecular electronics theory. Several interpretative indexes are suggested (distance correlator, collectivity measure and others) for analyzing GF. This new scheme is used for describing π-electron conductance of large-scale graphene-type molecules. We show that lacking the long-range effects in TB leads to drastic consequences for electron transport (overestimation of conductance by orders of magnitude, nonphysical very large long-distance transmission etc.)

Keywords: 
molecular electronics, transmission spectra, conjugated molecules, tight-binding models, electron correlation, long-range interactions.
References: 
1. Molecular and Nano Electronics: Analysis, Design and Simulation, ed. by J.M.Seminario, Elsevier, Amsterdam (2007).
 
2. Handbook on Nano and Molecular Electronics, ed. by S.E.Lyshevski, CRC Press, Boca Raton (2007).
 
3. Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology, ed. by J.R.Reimers, John Wiley & Sons, Hoboken, New Jersey (2011).
 
4. K.Hirose, N.Kobayashi, Quantum Transport Calculations for Nanosystems, Pan Stanford Publishing, Singapore (2014).
https://doi.org/10.1201/b16679
 
5. J.P.Launay, M.Verdaguer, Electrons in Molecules: From Basic Principles to Molecular Electronics, Oxford University Press, Oxford (2014).
https://doi.org/10.1093/acprof:oso/9780199297788.001.0001
 
6. J.C.Cuevas, E.Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore (2010).
https://doi.org/10.1142/7434
 
7. Y.Tsuji, E.Estrada, R.Movassagh, R.Hoffmann, Chem. Rev., 118, 4887 (2018).
https://doi.org/10.1021/acs.chemrev.7b00733
 
8. A.V.Luzanov, Funct. Mater., 26, 152 (2019).
https://doi.org/10.15407/fm26.01.152
 
9. A.V.Luzanov, in press 2019.
 
10. Y.G.Smeyers, L.Doreste-Suarez, Int. J. Quantum Chem., 7, 687 (1973).
https://doi.org/10.1002/qua.560070406
 
11. K.Yates, Huckel Molecular Orbital Theory, Academic Press, New York (1978).
https://doi.org/10.1016/B978-0-12-768850-3.50005-5
 
12. A.V.Luzanov, Funct. Mater., 21, 437 (2014).
https://doi.org/10.15407/fm21.04.437
 
13. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.
 
14. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).
https://doi.org/10.1063/1.4975196
 
15. S.G.Davison, A.T.Amos, J. Chem. Phys., 43, 2223 (1965).
https://doi.org/10.1063/1.1697114
 
16. J.A.Pople, Trans. Faraday Soc., 49, 1375 (1953).
https://doi.org/10.1039/tf9534901375
 
17. J.A.Pople, N.S.Hush, Trans. Faraday. Soc., 51, 600 (1955).
https://doi.org/10.1039/tf9555100600
 
18. J.Rincon, K.Hallberg, A.A.Aligia, S.Ramasesha, Phys. Rev. Lett., 103, 266807 (2009).
https://doi.org/10.1103/PhysRevLett.103.266807
 
19. J.P.Bergfield, G.C.Solomon, C.A.Stafford, M.A.Ratner, Nano Letters, 11, 2759 (2011).
https://doi.org/10.1021/nl201042m
 
20. K.G.L.Pedersen, M.Strange, M.Leijnse et al., Phys. Rev. B, 90, 125413 (2014).
https://doi.org/10.1103/PhysRevB.90.125413
 
21. G.C.Solomon, J.P.Bergfield, C.A.Stafford, M.A.Ratner, Beilstein J. Nanotechnol., 2, 862 (2011).
https://doi.org/10.3762/bjnano.2.95
 
22. Y.Tsuji, R.Hoffmann, R.Movassagh, S.Datta, J. Chem. Phys., 141, 224311 (2014).
https://doi.org/10.1063/1.4903043
 
23. E.Estrada, in: Quantum Chemistry at the Dawn of the 21st Century, ed. by T.Chakraborty, R.Carbo-Dorca, Apple Academic Press, Oakville (2018), p.445.
 
24. M.G.Everett, Methodological Innovations, 9, 1 (2016).
https://doi.org/10.1177/2059799116630662
 
25. A.V.Luzanov, V.E.Umanski, Theor. Experim. Chem., 13, 162 (1977).
https://doi.org/10.1007/BF00520556
 
26. A.V.Luzanov, O.A.Zhikol, Int. J. Quant. Chem., 104, 167 (2005).
https://doi.org/10.1002/qua.20511
 
27. C.J.O.Verzijl, J.S.Seldenthuis, J.M.Thijssen, J. Chem. Phys., 138, 094102 (2013).
https://doi.org/10.1063/1.4793259
 
28. L.-Y.Hsu, H.Rabitz, J. Chem. Phys., 145, 234702 (2016).
https://doi.org/10.1063/1.4972131
 
29. S.-M.Jhan, B.-Y.Jin, J. Chem. Phys., 147, 194106 (2017).
https://doi.org/10.1063/1.4999073
 
30. P.W.Anderson, D.J.Thouless, E.Abrahams, D.S.Fisher, Phys. Rev. B, 22, 3519 (1980).
https://doi.org/10.1103/PhysRevB.22.3519
 
31. D.S.Fisher, P.A.Lee, Phys. Rev. B, 23, 6851 (1981).
https://doi.org/10.1103/PhysRevB.23.6851
 
32. M.Reznikov, R.de-Picciotto, M.Heiblum et al., Superlattices and Microstructures, 23, 901 (1998).
https://doi.org/10.1006/spmi.1997.0559
 
33. A.V.Luzanov, J. Struct. Chem., 55, 799 (2014).
https://doi.org/10.1134/S0022476614050011
 
34. A.V.Luzanov, Funct. Mater., 23, 599 (2016).
https://doi.org/10.15407/fm23.04.420
 
35. A.V.Luzanov, in: Nanophysics, Nanophotonics, and Applications. Springer Proceedings in Physics, v.210, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2018), p.161.
 
36. T.T.Heikkila, The Physics of Nanoelectronics, Oxford University Press, Oxford (2013).

Current number: