Funct. Mater. 2020; 27 (1): 18-23.

doi:https://doi.org/10.15407/fm27.01.18

Radioactivity induced in radiation-resistant composite scintillators by irradiation with bremsstrahlung photons

V.F.Popov1, A.Yu.Boyarentsev2, N.Z.Galunov2,3, B.V.Grinyov2, N.L.Karavaeva2, A.V.Krech2, L.G.Levchuk1

1National Science Center "Kharkiv Institute of Physics and Technology", 1 Akademichna Str., 61108 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Radioactivity induced by bremsstrahlung photons in samples of composite scintillators containing grains of inorganic GSO:Ce, GPS:Ce, YSO:Ce and YAG:Ce crystals is studied. Measurements of the amplitude spectra of composite scintillators indicate the presence of intrinsic gamma activity resulting from the irradiation. The results obtained agree with the assumption of long-lived gamma-emitting isotope production. This should be taken into account, when composite scintillators are used for particle registration with detectors subjected to intensive irradiation.

Keywords: 
composite scintillators, radiation resistance, high energy physics.
References: 

​​

1. CMS Collaboration, Technical proposal for the upgrade of the CMS detector through 2020, CERN-LHCC-2011-006, CMS-UG-TP-1, LHCC-P-004, CERN, Geneva (2011).
 
2. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Nucl.Inst. Meth. Phys. Res., A, 841, 124 (2017).
https://doi.org/10.1016/j.nima.2016.10.034
 
3. N.Z.Galunov, T.E.Gorbacheva, B.V.Grinyov et al., Nucl. Inst. Meth. Phys. Res, A, 866, 104 (2017).
https://doi.org/10.1016/j.nima.2017.06.008
 
4. N.Z.Galunov, Ia.V.Gerasymov, T.E.Gorbacheva et al., Problem Atom. Scien. Techn, 3, 35 (2017).
 
5. A.V.Krech, N.Z.Galunov, Ukr. J. Phys., 62, 569 (2017).
https://doi.org/10.15407/ujpe62.07.0569
 
6. N.Z.Galunov, B.V.Grinyov, N.L.Karavaeva et al., IEEE Trans. Nucl.Scien., 56, 904 (2009).
https://doi.org/10.1109/TNS.2009.2015761
 
7. N.Z.Galunov, B.V.Grinyov, N.L.Karavaeva et al., IEEE Trans. Nucl. Scien., 58, 339 (2011).
https://doi.org/10.1109/TNS.2010.2096516
 
8. E.Biagtan, E.Goldberg, J.Harmon et al., Nucl. Instr. Meth. Phys. Res., B, 93, 296 (1994).
https://doi.org/10.1016/0168-583X(94)95478-X
 
9. A.Quaranta, S.Carturan, T.Marchi et al., Nucl. Instr. Meth. Phys. Res., B, 268, 3155 (2010).
 
10. A.Yu.Boyarintsev, N.Z.Galunov, N.L.Karavaeva et al., Functional Materials, 20, 471 (2013).
https://doi.org/10.15407/fm20.04.471
 
11. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Probl. Atom. Scien. Techn. , 5, 59 (2016).
 
12. A.Yu.Boyarintsev, N.Z.Galunov, Ia.V.Gerasymov et al., Probl.. Atom. Scien. Techn. , 3, 60 (2019
 
 
   
 
 

 

Current number: