Funct. Mater. 2020; 27 (1): 184-191.

doi:https://doi.org/10.15407/fm27.01.184

Synthesis, characterization and antimicrobial properties of chemically modified apatite-related calcium phosphates

O.V.Livitska1, N.Yu.Strutynska1, O.M.Vasyliuk2, I.I.Grynyuk1, S.V.Prylutska1, N.S.Slobodyanik1

1T. Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine 2Zabolotny Institute of Microbiology and Virology National Academy of Science of Ukraine, 154 Zabolotnogo Str., 03143 Kyiv, Ukraine

Abstract: 

Na+, CO32--HAPs and Na+, M2+, CO32--HAPs (M2+ - Zn2+, Cu2+) were synthesized by precipitation method and characterized. According to powder XRD and SEM data the prepared particles of all samples are of nano size and single phase. The quantitative elemental analysis showed that obtained calcium phosphates contain the following substituted elements: Na+ (0.2-0.3 %wt), Zn2+ (1.1 %w/w) or Cu2+ (1.9 %wt) and CO32- while the FTIR data confirm the partial substitution of phosphate by carbonate group (B-type) in HAP structure. The influence of particles size on phosphates properties was also determined for sample Na+, CO32--HAP heated to 700°C. The antimicrobial properties of synthesized nanoparticles of chemically modified calcium phosphates against of opportunistic microorganisms - Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes were studied. The antimicrobial effect of modified HAPs (5-20 mM) on all tested reference strains was established. Prepared Na+, Zn2+, CO32--HAP had higher inhibitory activity against Gram-positive microorganisms - S. aureus and S. pyogenes than that for Gram-negative ones. Phosphate Na+, Cu2+, CO32--HAP had strong inhibitory effect on both Gram-positive and Gram-negative bacteria.

Keywords: 
nanoparticles, apatite, zinc, copper, antimicrobial activity.
References: 
1. J.Lu, H.Yu, C.Chen, RSC Adv., 8, 2015 (2018).
https://doi.org/10.1039/C7RA11278E
 
2. K.Ishikawa, Y.Miyamoto, A.Tsuchiya et al., Materials, 11, 1993 (2018).
https://doi.org/10.3390/ma11101993
 
3. J.Enax, M.Epple, Oral Health &Preventive Dentistry, 16, 7 (2018).
 
4. A.Amedlous, O.Amadinea, Y.Essamlalia et al., RSC Adv., 9, 14132 (2019).
https://doi.org/10.1039/C9RA02021G
 
5. M.Schiavoni, S.Campisi, P.Carniti et al., Appl. Catalysis A: General, 563, 43 (2018).
https://doi.org/10.1016/j.apcata.2018.06.020
 
6. C.Rosticher, B.Viana, T.Maldiney et al., J. Luminescence, 170, 460 (2016).
https://doi.org/10.1016/j.jlumin.2015.07.024
 
7. M.A. Pogosova, A.A.Eliseev, P.E.Kazin et al., Dyes and Pigments, 141, 209 (2017).
https://doi.org/10.1016/j.dyepig.2017.02.029
 
8. S.L.Iconaru, M.Motelica-Heino, R.Guegan et al., Materials, 11, 2204 (2018).
https://doi.org/10.3390/ma11112204
 
9. M.Ferri, S.Campisi, M.Scavini et al., Appl. Surf. Sci., 475, 397 (2019).
https://doi.org/10.1016/j.apsusc.2018.12.264
 
10. C.Huang, S.Bhagia, N.Hao et al., RSC Adv., 9, 5786 (2019).
https://doi.org/10.1039/C8RA09523J
 
11. A.A.Hendi, J. All. Comp., 712, 147 (2017).
https://doi.org/10.1016/j.jallcom.2017.04.021
 
12. P.Choudhury, D.C.Agrawal, Surf. Coat. Techn., 206, 360 (2011).
https://doi.org/10.1016/j.surfcoat.2011.07.031
 
13. A.Bigi, E.Boanini, M.Gazzano, Fundam. Applic., 235 (2016).
https://doi.org/10.1016/B978-1-78242-338-6.00008-9
 
14. H.Madupalli, B.Pavan, M.M.J.Tecklenburg, J. Solid State Chem. 255, 27 (2017).
https://doi.org/10.1016/j.jssc.2017.07.025
 
15. E.Garskaite, K.-A.Gross, S.-W.Yang et al., Cryst. Eng. Comm, 16, 3950 (2014).
https://doi.org/10.1039/c4ce00119b
 
16. Y.Huang, X.Zhang, H.Mao et al., RSC Adv., 5, 17076 (2015).
https://doi.org/10.1039/C4RA12118J
 
17. D.V.Shepherd, K.Kauppinen, R.A.Brooks et al., J. Biomed. Mater. Res. Part A, 102A, 4136 (2014).
https://doi.org/10.1002/jbm.a.35089
 
18. V.Stanic, S.Dimitrijevic, J.Anti'c-Stankovic et al., Appl. Surf. Sci., 256, 6083 (2010).
https://doi.org/10.1016/j.apsusc.2010.03.124
 
19. E.S.Thian, T.Konishi, Y.Kawanobe et al., J. Mater. Sci: Mater. Med., 24, 437(2013).
https://doi.org/10.1007/s10856-012-4817-x
 
20. Z.Gang, L.Yubao, X.Wei et al., J. Biomedical Mater. Res. Part A, 930 (2007).
 
21. N. Strutynska, I.Zatovsky, N.Slobodyanik et al., Europ. J. Inorg. Chem., 2015, 622 (2015).
https://doi.org/10.1002/ejic.201402761
 
22. G.T.Feitosa, M.V.Santos, H.M.Barreto et al., Mater. Sci. Forum, 869, 890 (2016)
https://doi.org/10.4028/www.scientific.net/MSF.869.890
 
23. D.Predoi, C.L.Popa, P.Chapon et al., Materials 9, 778 (2016).
https://doi.org/10.3390/ma9090778
 
24. C.Valgas, S.M.Souza, E.F.A.Smўnia et al., Braz. J. Microbiol, 38, 369 (2007).
https://doi.org/10.1590/S1517-83822007000200034
 
25. S.Sathiskumar, S.Vanaraj, D.Sabarinathan et al., Mater.Res. Express, 5, 2 (2018).
https://doi.org/10.1088/2053-1591/aaae10
 
26. G.D.Venkatasubbu, S.Ramasamy, V.Ramakrishnan et al., Biotech., 1, 173 (2011).
https://doi.org/10.1007/s13205-011-0021-9
 
27. J.Pasquet, Y.Chevalier, J.Pelletier et al., Colloid. Surface A., 457, 263 (2014).
https://doi.org/10.1016/j.colsurfa.2014.05.057
 
28. X.Wang, A.Ito, Y.Sogo et al., Acta Biomater., 6, 962 (2010).
https://doi.org/10.1016/j.actbio.2009.08.038
 
29. H.Yang, L.Zhang, K.-W.Xu, Ceram. Internat., 35, 1595 (2009).
https://doi.org/10.1016/j.ceramint.2008.09.012
 
30. D.Osman, K.J.Waldron, H.Denton et al., J. Biological Chem., 285, 25259 (2010).
https://doi.org/10.1074/jbc.M110.145953
 
31. O.Soutourina, S.Dubrac, O.Poupel et al., PLoS Pathogens, 6, 1000894 (2010).
https://doi.org/10.1371/journal.ppat.1000894

Current number: